Chapter 3

Vector Integration

3.1 Basic Integrals

3.1.1 Integral

1. Consider a three-dimensional vector \boldsymbol{A} which is function of a scalar s . The integral of the vector over the s is

$$
\begin{equation*}
\int \boldsymbol{A}(s) d s \equiv \hat{\boldsymbol{e}}_{i} \int A_{i}(S) d s . \tag{3.1}
\end{equation*}
$$

3.1.2 Scalar line integral

1. Consider a three-dimensional vector \boldsymbol{A} which is function of postion vector $\boldsymbol{r}=\hat{\boldsymbol{e}}_{i} x_{i}$. The scalar line integral of the vector over \boldsymbol{r} from the poiont $\boldsymbol{a}=\hat{\boldsymbol{e}}_{i} a_{i}$ to $\boldsymbol{b}=\hat{\boldsymbol{e}}_{i} b_{i}$ is

$$
\begin{equation*}
\int \boldsymbol{A} \cdot d \boldsymbol{r} \equiv \int_{\boldsymbol{a}}^{\boldsymbol{b}} A_{i}\left(x_{1}, x_{2}, x_{3}\right) d x_{i} . \tag{3.2}
\end{equation*}
$$

3.1.3 Closed integral

1. If the path C is closed, we use a special notation like

$$
\begin{equation*}
\oint_{C} \boldsymbol{A} \cdot d \boldsymbol{r} . \tag{3.3}
\end{equation*}
$$

3.1.4 Surface integral

1. The surface integral is defined by

$$
\begin{equation*}
\int_{S} \boldsymbol{V} \cdot d \boldsymbol{A} \tag{3.4}
\end{equation*}
$$

, where $d \boldsymbol{A}=\hat{\boldsymbol{n}} d A, \hat{\boldsymbol{n}}$ is normal vector of surface.

3.1.5 Volume integral

1. The volume integral of a vector \boldsymbol{A} or a scalar ϕ is defined by

$$
\begin{gather*}
\int_{V} \boldsymbol{A} d^{3} \boldsymbol{r} \tag{3.5a}\\
\int_{V} \phi d^{3} \boldsymbol{r} \tag{3.5b}
\end{gather*}
$$

, where $d^{3} \boldsymbol{r}=d x_{1} d x_{2} d x_{3}$.

3.2 Divergence Theorem

1. The divergence theorem is

$$
\begin{equation*}
\int_{V} \nabla \cdot \boldsymbol{V} d^{3} \boldsymbol{r}=\oint_{S} \boldsymbol{V} \cdot d \boldsymbol{A} \tag{3.6}
\end{equation*}
$$

, where a volume V is bounded by the closed surface $S, d \boldsymbol{A}$ is the surface elements of S.

3.3 Stokes' Theorem

1. The Stokes' theorem is

$$
\begin{equation*}
\int_{S} \nabla \times \boldsymbol{V} \cdot d \boldsymbol{A}=\oint_{C} \boldsymbol{V} \cdot d \boldsymbol{l} \tag{3.7}
\end{equation*}
$$

, where a surface S is bounded by the closed path C.

