Operating System

Chapter 8. Virtual Memory

Lynn Chol
School of Electrical Engineering

@ HERGFR Computer System Laboratory

Memory Hierarchy

O Motivated by
» Principles of Locality
» Speed vs. size vs. cost tradeoff

A Locality principle

» Spatial Locality: nearby references are likely
— Example: arrays, program codes
— Access a block of contiguous words

» Temporal Locality: the same reference is likely to occur soon
— Example: loops, reuse of variables
— Keep recently accessed data to closer to the processor

O Speed vs. Size tradeoff
» Bigger memory is slower: SRAM - DRAM - Disk - Tape

» Fast memory IS more expensive
R R Computer System Laboratory

Levels of Memory Hierarchy

Capacity/Access Time Moved By Faster/Smaller
100-KBs Registers
1 Instruction Program/Compiler
+ Operands 1- 16B
KBs-MBs Cache
A . H/W
Cache Line 16 - 512B
MBs-GBs Main Memory
A OS
| Page 512B — 64MB
100GBs Disk
T User
| File any size
Infinite Network/Cloud SIoweJ/Larger
AR Computer System Laboratory

Cache

0 A small but fast memory located between processor
and main memory

a Benefits
» Reduce load latency
» Reduce store latency
» Reduce bus traffic (on-chip caches)

QO Cache Block Allocation (When to place)

» On aread miss
» On a write miss
— Write-allocate vs. no-write-allocate

O Cache Block Placement (Where to place)
» Fully-associative cache
» Direct-mapped cache
» Set-associative cache

P e Computer System Laboratory

Fully Associative Cache

32b Word, 4 Word Cache Block

A memory block can be placed into
any cache block location!

32KB cache (SRAM)
0

0

Cache Block
(Cache Line)

2111

RS

Virtual Address Space
32 bit VA = 4GB (DRAM)

Memory Block

Computer System Laboratory

Fully Associative Cache

TAG RAM V 32KB DATA RAM
-Q 0 0
31 3 0
ta ff
g |offset | Yes ‘
= p1g 2111
1 Dataout
lWord & Byte select] l
Data to CPU
: Cache Hit
Advantages Disadvantages
1. High hit rate 1. Very expensive

2. Fast

P e Computer System Laboratory

Direct Mapped Cache

A memory block can be placed into

only a single cache block!

32KB cache (SRAM)

0

2111

RS

Virtual Address Space
32 bit VA = 4GB (DRAM)

0

Memory Block

(217_1)*211

228.1

Computer System Laboratory

Direct Mapped Cache

TAG RAM V 32KB DATA RAM
0 0
31 14 43 0
tag index [offset||r—
—| 3
S
o
2111 2111
!l | Data out
") Word &
Yes Byte select
Data to CPU
Disadvantages Advantages Cache Hit
1. Low hit rate 1. Simple HW

2. Fast Implementation

P e Computer System Laboratory

Set Associative Cache

In an M-way set associative cache,
A memory block can be placed into 0
M cache blocks!

32KB cache (SRAM)

2 Memory Block

0
210 sets
——Way- 0
v 210_1
t ow 2*210
10
21V sets Way 1
v 211_1

(218_1)*210

228.1

P e Computer System Laboratory

Set Associative Cache

TAG RAM V
0 0
31 13 43 O
tag index Joffset||r—
—| 3
o
210_1 | | 210_1
i v \ 4
Yes 1 D

32KB DATA RAM

——4-basou

Most caches are implemented as
set-associative caches!

RS

J
\ Data to CPU

Cache Hit

<

Word &
Byte select

Computer System Laboratory

Cache Block Replacement

O Random

» Just pick one and replace it
» Pseudo-random: use simple hash algorithm using address

O LRU (least recently used)

» need to keep timestamp
» expensive due to global compare
» Pseudo-LRU: use LFU using bit tags

O Replacement policy critical for small caches

P e Computer System Laboratory

3+1 Types of Cache Misses

A Cold-start misses (or compulsory misses): the first
access to a block is always not in the cache
» Misses even in an infinite cache

O Capacity misses: if the memory blocks needed by a
program is bigger than the cache size, then capacity
misses will occur due to cache block replacement.

» Misses even in fully associative cache

O Conflict misses (or collision misses): for direct-
mapped or set-associative cache, too many blocks can
be mapped to the same set.

0 Invalidation misses (or sharing misses): cache blocks
can be invalidated due to coherence traffic

P e Computer System Laboratory

Miss Rates (SPEC92)

0.14
0.12

0.1
0.08
0.06
0.04
0.02

8-way

Capacity

I ©
i

Cache Size (KB) Compulsory

R R Computer System Laboratory

Virtual Memory

Q Virtual memory

» Programmer’s view of memory
» A linear array of bytes addressed by the virtual address

Q Physical memory

» Machine’s physical memory (DRAM)
» Also, called main memory

Q Virtual address
» The address of a program

Q Physical address
» The address of a DRAM

P e Computer System Laboratory

Virtual Memory

ad Functions

» Large address space
— Easy to program
— Provide the illusion of infinite amount of memory
— Program code/data can exceed the main memory size
— Processes partially resident in memory

» Protection
— Privilege level
— Access rights: read/modify/execute permission

» Sharing

» Portability

» Increased CPU utilization
— More programs can run at the same time

P e Computer System Laboratory

Virtual Memory

d Require the following functions

» Memory allocation (Placement)
» Memory deallocation (Replacement)
» Memory mapping (Translation)

0 Memory management

» Automatic movement of data between main memory and secondary
storage

— Done by operating system with the help of processor HW

— Main memory contains only the most frequently used portions of a
process’s address space

» lllusion of infinite memory (size of secondary storage) but access time
IS equal to main memory

» Use demand paging

— Bring a page on demand
P e Computer System Laboratory

RS

Simple Paging

Virtual Memory
Paging

Simple Segmentation

Paging and Segmentation

Virtual Memory
Segmentation

Main memory
partitioned into small
fixed-size chunks called
frames

Main memory
partitioned into small
fixed-size chunks called
frames

Main memory not
partitioned

Main memory not
partitioned

Program broken into
pages by the compiler or
memory management
system

Program broken into
pages by the compiler or
memory management
system

Program segments
specified by the
programmer to the
compiler (i.e., the
decision is made by the
programmer)

Program segments
specified by the
programmer to the
compiler (i.e., the
decision is made by the
programmer)

Internal
fragmentation
within frames

Internal fragmentation
within frames

No internal
fragmentation

No internal
fragmentation

No external
fragmentation

No external
fragmentation

External fragmentation

External fragmentation

Operating system must
maintain a page table
for each process
showing which frame
each page occupies

Operating system must
maintain a page table
for each process
showing which frame
each page occupies

Operating system must
maintain a segment
table for each process
showing the load
address and length of
cach segment

Operating system must
maintain a segment
table for each process
showing the load
address and length of
each segment

Operating system must
maintain a free frame
list

Operating system must
maintain a free frame
list

Operating system must
maintain a list of free
holes in main memory

Operating system must
maintain a list of free
holes in main memory

Processor uses page
number, offset to
calculate absolute
address

Processor uses page
number, offset to
calculate absolute
address

Processor uses scgmenl
number, offset to
calculate absolute
address

Processor uses segment
number, offset to
calculate absolute
address

All the pages of a
process must be in main
memory for process to
run, unless overlays are
used

Not all pages of a
process need be in main
memory frames for the
process to run. Pages
may be read in as
needed

All the segments of a
process must be in main
memory for process to
run, unless overlays are
used

Not all segments of a
process need be in main
memory for the process
to run. Segments may
be read in as needed

Reading a page into
main memory may
require writing a page
out to disk

Reading a segment into
main memory may
require writing one or
more segments out to
disk

Computer System Laboratory

Source: Pearson

Paging

O Divide address space into fixed size pages
» VA consists of (VPN, offset)
» PA consists of (PPN, offset)

O Map a virtual page to a physical page frame at runtime

Q Each process has its own page table

» The page table contains mapping between VPN and PPN
» VPN is used as an index into the page table

Q Page table entry (PTE) contains
> PPN
» Presence bit — 1 if this page is in main memory
» Dirty bit — 1 if this page has been modified
» Reference bits — reference statistics info used for page replacement
» Access control — read/write/execute permissions
» Privilege level — user-level page versus system-level page
» Disk address

Q Internal fragmentation
P e Computer System Laboratory

Virtual Address and PTE

Virtual Address
I Page Number | Offset .
Page Table Entry
PJ? r Control Bits Frame Number
(a) Paging only

Virtual Address

I Segment Number | Offset .

Segment Table Entry

PM[Other Control Bits Length Segment Base

(b) Segmentation only

Virtunal Address
Segment Number Page Number Offset

Segment Table Entry

Control Bits Length Segment Base

Page Table Entry

P er Control Bits Frame Number P= present bit
M = Modified bait

Source: Pearson
(¢) Combined segmentation and paging

R R Computer System Laboratory

Virtual to Physical Address Translation

|
i
Virtual Address : Physical Address |
Page # | Offset 1 Frame # Offset
[1
[
|
i Register
n hits i Page Table Ptr
[
|
] Page Table m bt
|
[
[
|
|
| | Frame #
[
|
|
|
i
|
Program n Paging Mechanism
|

RS

Figure 8.3 Address Translation in a Paging System

Source: Pearson

OffsetI

w

Page
Frame

W

Main Memory

Computer System Laboratory

Paging

Q Page table organization

» Linear: one PTE per virtual page
» Hierarchical: tree structured page table

— Page table itself can be paged due to its size

~ For example, 32b VA, 4KB page, 16B PTE requires 16MB page table
— Page directory tables

~ PTE contains descriptor (i.e. index) for page table pages

— Page tables - only leaf nodes
~ PTE contains descriptor for page

» Inverted: PTEs for only pages in main memory
» Page table entries are dynamically allocated as needed

P e Computer System Laboratory

Paging

Q Different virtual memory faults
» TLB miss - PTE notin TLB
» PTE miss - PTE not in main memory
» Page miss - page not in main memory
» Access violation
» Privilege violation

P e Computer System Laboratory

Multi-Level Page Tables

aQ Given:
> 4KB (212) page size
» 32-bit address space
» 4-byte PTE

d Problem:

» Would need a 4 MB page table!
— 220*4 bytes

O Common solution

» multi-level page tables
> e.g., 2-level table (P6)

— Level 1 table: 1024 entries, each of which points
to a Level 2 page table.
~ This is called page directory

— Level 2 table: 1024 entries, each of which points
to a page

Level 1
Table

P e Computer System Laboratory

s
[

_ﬂl.'.-'

Two-Level Hierarchical Page Table

4-kbyte root
page table

4-Mbyte user r
page table

4-Gbyte user
address space

Figure 8.4 A Two-Level Hierarchical Page Table

Source: Pearson

P e Computer System Laboratory

Inverted Page Table

O PTEs for only pages in main memory

aQ VPN is mapped into a hash value, which points to

an inverted page table entry

» Fixed proportion of physical memory is required for the page tables
regardless of the number of processes

P e Computer System Laboratory

Inverted Page Table

Virtual Address

n bits
Page # | Offset
Control
n bits bits
i Process
hash m bits Page # 1D Chain
function 0
> I
J
Y ¥
i | Frame # Offset
m bits
Inverted Page Table Real Address

{one entry for each
physical memory frame)

Figure 8.6 Inverted Page Table Structure

Source: Pearson

P e Computer System Laboratory

TLB

O TLB (Translation Lookaside Buffer)

» Cache of page table entries (PTES)

» On TLB hit, can do virtual to physical translation without accessing the page
table

» On TLB miss, must search the page table for the missing entry

d TLB configuration

» ~100 entries, usually fully associative cache

» sometimes mutil-level TLBs, TLB shootdown issue

» usually separate I-TLB and D-TLB, accessed every cycle
» Miss handling

— On a TLB miss, exception handler (with the help of operating system) search
page table for the missed TLB entry and insert it into TLB
~ Software managed TLBs - TLB insert/delete instructions
~ Flexible but slow: TLB miss handler ~ 100 instructions

— Sometimes, by HW - HW page walker

P e Computer System Laboratory

Address Translation with TLB

Secondary
Main Memory Memory

) W

Virtual Address

Page # | Offset
Translation
Lookaside Buffer

> TLB hit

:‘-: DﬂsetI

> » A
Load

Page Table page
— 4
TLB miss \/-\

k4 h 4 i

Frame #| Offset

Real Address \/\

Page fault

Figure 8.7 Use of a Translation Lookaside Buffer

Source: Pearson

R R Computer System Laboratory

DECStation 3100 Example

Virtmal address

313029 earnvavnerrnn]5 14 131211 1088 vewse3 210

Wirtual page numier Page offset
-~ 20 -1 1z
Walid Darty Tag Phiysical page number
TLE G: '
TLE hit +—» (= ol ¥
S
(Cam
"\-k_?':'
Phiysical page numbar I Page offsat
Physical addrass Byt
Physicel addrass tag | Cache indax affsat
s J 14 \1\2
walid Tag Diata
Cache
= L]
¥ 32

KT) !
Data
Cache hlt"—G Source: Morgan Kaufmann

P e Computer System Laboratory

TLB Organization

Virtual Address Virtual Address

Page # Offset Page # Offset

Page# PT Eniries
» 10
g BN
—'L
M 27
o 14
B 37 o 1
» 211
N B E
» 20
a
v k . 8 v w
|3?|5l]2| » |3?|51]2|
. Frame # Offset Translation Lookaside Buffer Frame # Offset
Real Address Real Address

Page Table

ia) Direct mapping ib} Associative mapping

Figure 8.9 Direct Versus Associative Lookup for Page Table Entries

Source: Pearson

P e Computer System Laboratory

Page Size

O The smaller the page size, the lesser the amount of
internal fragmentation
» However, more pages are required per process
» More pages per process means larger page tables

» For large programs in a heavily multiprogrammed environment
portion of the page tables of active processes must be in secondary
storage instead of main memory

» The physical characteristics of most secondary-memory devices
favor a larger page size for more efficient block transfer

P e Computer System Laboratory

-
i

Paging Behavior of a Program &

O As page size increases, each page will contain locations further away from
recent references, increasing the page fault rate, but the fault rate begin to fall as
the page size approaches the size of the entire process

A A

Page Faull Rate
Page Fault Rate

Y

ia) Page Size b} Number of Page Frames Allocated

P = size of entire process
W = working set size
N = total number of pages in process

Figure 8.11 Typical Paging Behavior of a Program

Source: Pearson
P e Computer System Laboratory

Example: Page Sizes

Computer Page Size
Atlas 512 48-bit words
Honeywell-Multics 1024 36-bit words

IBM 370/XA and 370/ESA 4 Kbytes

VAX family 512 bytes

IBM AS/400 512 bytes

DEC Alpha 8 Kbytes

MIPS 4 Kbytes to 16 Mbytes
UltraSPARC 8 Kbytes to 4 Mbytes
Pentium 4 Kbytes or 4 Mbytes
IBM POWER 4 Kbytes

Itanium 4 Kbytes to 256 Mbytes

Source: Pearson

P e Computer System Laboratory

Segment Organization

O Segmentation allows a programmer to view a virtual
memory as a collection of segments

QO Advantages
» Simplify the handling of growing data structures
» Allow program modules to be altered and recompiled independently
» Facilitate sharing among processes

d Segment table entry contains the starting address of
the corresponding segment in main memory and the
length of the segment

» A presence bit is needed to determine if the segment is already in main
memory

» A dirty bit is needed to determine if the segment has been modified since it
was loaded in main memory

P e Computer System Laboratory

Address Translation

1 |
| |
Virtual Address : Segment Table :
| Seg# | Offset=a |y Base +d I
| I I

T 1 W

: Register :
| Seg Tahle Pir |
| |
1 |

[Segment Table] d -

1 | E

i ! > g

1 | 7
[|
1 |
| [Length [Base 1
| |
1 |
1 |

| 1 0
| |
Program : Segmentation Mechanism : Main Memory

I |

Figure 8.12 Address Translation in a Segmentation System

Source: Pearson

R R Computer System Laboratory

Paged Segmentation

Q Virtual address space is broken up into a number of
segments. Each segment is broken up into a number of

fixed-sized pages.

Virtual Address

Segment Number Page Number Offset

Segment Table Entry

Control Bits Length Segment Base

Page Table Entry

PMOther Control Bits P= present bit

M = Modified bit

(¢) Combined segmentation and paging

Source: Pearson

P e Computer System Laboratory

Address Translation

| | 1
| | 1
Virtual Address u u !

| | 3 1

Seg# | Page # | Offset | g I Frame #| Offset |
| | 1 1
T T I ")
i i 1
| | 1
B (Seg Table Ptr | |
| | 1
" Segment " Page 1
1 Tahle 1 Table 1
]] - 1
1 1 EL I fosetI# Page
]] ¥ &] Frame
L, e — J
[| [| |
| | 1
| | |
| | 1
[| [| |
| | 1 _/\
| | |

Program i Segmentation 1 Paging . Main Memory

[| . [| . |
. Mechanism . Mechanism .

Figure 8.13 Address Translation in a Segmentation/Paging System

Source: Pearson

P e Computer System Laboratory

Virtual Memory Policies

Q Key issues: Performance
» Minimize page faults

Fetch Policy
Demand paging
Prepaging

Placement Policy

Replacement Policy
Basic Algorithms
Optimal
Least recently used (LRU)
First-in-first-out (FIFO)
Clock
Page Buffering

Resident Set Management
Resident set size
Fixed
Variable
Replacement Scope
Global
Local

Cleaning Policy
Demand
Precleaning

Load Control

Degree of multiprogramming

MR R

Source: Pearson

Computer System Laboratory

Fetch Policy

0O Demand Paging
» Bring a page into main memory only on a page miss
» Generate many page faults when process is first started
» Principle of locality suggests that as more and more pages are
brought in, most future references will be to pages that have recently
been brought in, and page faults should drop to a very low level
O Prepaging
» Pages other than the one demanded by a page fault are brought in

» |If pages of a process are stored contiguously in secondary memory
It is more efficient to bring in a number of pages at one time

» Ineffective if extra pages are not referenced

P e Computer System Laboratory

Frame Locking

Q When a frame is locked, the page currently
stored in that frame should not be replaced
» OS kernel and key control structures are locked
» 1/O buffers and time-critical areas may be locked

» Locking is achieved by associating a lock bit with each
frame

P e Computer System Laboratory

Replacement Algorithms

Q Optimal
» Select the page for which the time to the next reference
IS the longest

O LRU

» Select the page that has not been referenced for the longest
time

a FIFO

» Page that has been in memory the longest is replaced

a Clock

» Associate a use bit with each frame

» When a page is first loaded or referenced, the use bitis setto 1
» Any frame with a use bit of 1 is passed over by the algorithm

» Page frames visualized as laid out in a circle

P e Computer System Laboratory

Page address

stream 2 3 2 ! 5 2 4 5 3 2 5 2
2 2 2 2 2 2 E E E 2 2 2
OPT 3 3 3 3 3 3 3 3] L3201 2] L3
] 5 5 5 5 5 5 5 5

F F F
. 0 - [- A - I - N S e S I
LRU 3 3 3 5 5 5 5 s LSl LS5l L&
1 1 1 4 4 4 2 2 2

F F F F
2 2 2 2 3 3 3 3
FIFO 3 3 3 2 2 3 3
]]] 4 4 4 4 4 2
F F F F F F
(2% | [2%] [2%}»12%] |S5*] |[S* |5k |»|5%]| [3®] | 3% |n]dw EQ
CLOCK - 3 d 3% (2%] [2*] [2% bl 2 faf 2w [2*]
| e 1%]] 4= 4* 4 4 ElEl

F F F F F

F= page fault occurring after the frame allocation is initially filled

Figure B.15 Behavior of Four Page Replacement Algorithms

Source: Pearson

AR RS Computer System Laboratory

Clock Policy

First frame in

circular buffer of
n-1 0 frames that are
candidates for replacement

next frame
pointer

{a) State of buffer just prior to a page replacement

{b) State of buffer just after the next page replacement

Source: Pearson

Figure 8.16 Example of Clock Policy Operation
P e Computer System Laboratory

, 404
o . FIFO
E]
= 39| CLOCK
=11
=] -
z 2 LRU
T 20
2 1s OPT
= 10
=]
0 —
6 8 10 12 14
Number of Frames Allocated
Figure 8.17 Comparison of Fixed-Allocation, Local Page Replacement Algorithms

RS

Source: Pearson

Computer System Laboratory

Page Buffering

A A replaced page is not lost, but rather assigned to one
of two lists
» Free page list is a list of page frames available for reading in pages

— When a page is to be read in, the page frame at the head of the list is
used, destroying the page that was there

— When a unmodified page is to be replaced, it remains in memory and its
page frame is added to the tail of the free page list

» Modified page list is a list of page frames that have been modified

— When a modified page is to be written out and replaced, the page frame
Is added to the tail of the modified page list

» Note that when a page is replaced, the page is not physically moved.
Instead, the PTE for this page is removed and placed in either the
free or modified page list

d Used in VAX VMS

P e Computer System Laboratory

Working Set Mlanagement

O The OS must decide how many pages to bring in

» The smaller the amount of memory allocated to each process, the
more processes can reside in memory

» Small number of pages loaded increases page faults

» Beyond a certain size, further allocations of pages will not effect the
page fault rate

d Fixed allocation

» Allocate a fixed number of frames to a process

» On a page fault, one of the pages of that process must be replaced
d Variable allocation

» Allow the number of page frames allocated to a process to be varied
over the lifetime of the process

P e Computer System Laboratory

O The scope of a replacement strategy can be global or local

QO Local scope

» Choose only among the resident pages of the process generating the fault

QO Global scope

Replacement Scope

» Consider all unlocked pages in main memory

Fixed Allocation

Variable Allocation

Source: Pearson

MR R

Local Replacement

Global Replacement

*Number of frames allocated
to a process is fixed.

*Page to be replaced is chosen
from among the frames

allocated to that process.

*Not possible.

*The number of frames
allocated to a process may be
changed from time to time to
maintain the working set of
the process.

*Page to be replaced is chosen
from among the frames
allocated to that process.

*Page to be replaced is chosen
from all available frames in
main memory; this causes
the size of the resident set of
processes to vary.

Computer System Laboratory

Fixed Allocation, Local Scope

O Necessary to decide ahead of time the amount of
allocation to a process

Q If allocation is too small, there will be a high page
fault rate

Q If allocation is too large, there will be too few
processes in main memory
» Increase processor idle time
» Increase time spent in swapping

P e Computer System Laboratory

Variable Allocation, Global Scope

O Easiest to implement
» Adopted in many operating systems

O OS maintains a list of free frames

a Free frame is added to working set of a process when
a page fault occurs

Q If no frames are available, the OS must choose a page
currently in memory, except the locked frames

P e Computer System Laboratory

Variable Allocation, Local Scope

0 When a new process is loaded into main memory,
allocate to it a certain number of page frames as its
working set

O When a page fault occurs, select the page to replace
from among the resident set of the process that suffers
the fault

O Reevaluate the allocation provided to the process and
increase or decrease it to improve overall
performance

» Decision to increase or decrease a working set size is based on the
assessment of future demands

P e Computer System Laboratory

Working Set of a Process

RS

Sequence of
Page
References

24

15

18

23

24

17

18

24

18

17

17

15

24

17

24

18

Window Size, A

2 3 4 5

24 24 24 24
24 15 24 15 24 15 24 15
1518 241518 241518 241518
18 23 1518 23 24 1518 23 241518 23
2324 18 23 24 . .
2417 232417 18 23 24 17 1518 23 24

17

17 18 2417 18 . 18 23 24 17
18 24 . 2417 18 .

. 18 24 . 2417 18
18 17 241817 . .

17 1817 . .
17 15 17 15 1817 15 241817 15
15 24 17 15 24 17 15 24 .
2417 . . 17 15 24

. 24 17 . .
2418 17 24 18 17 24 18 1517 24 18

Source: Pearson

Computer System Laboratory

Page Fault Frequency (PFT)

O Requires a use bit to be associated with each page in
memory
» Bit is set to 1 when that page is accessed

» When a page fault occurs, the OS notes the virtual time since the
last page fault for that process

> |If the amount of time since the last page fault is less than a
threshold, then a page is added to the working set of the process

» The strategy can be refined by using 2 thresholds: An upper
threshold is used to trigger a growth in the working set size while a
lower threshold is used to trigger a shrink in the working set size.

0 Does not perform well during the transient periods
when there is a shift to a new locality

P e Computer System Laboratory

Cleaning Policy

0 Concerned with determining when a modified page
should be written out to secondary memory

0O Demand cleaning

» A page is written out to secondary memory only when it has been selected for
replacement

d Precleaning

» Write modified pages before they are replaced
» The pages may be modified again before they are replaced

P e Computer System Laboratory

Multiprogramming

O Determines the 4
number of processes
that will be resident
in main memory

» Multiprogramming
level

O Too few processes
lead to swapping

Thrashing

Swapping

Processor Utilization

O Too many processes,
lead to insufficient
working set size,
resulting in thrashing
(frequent faults)

Multiprogramming Level

Figure 8.21 Multiprogramming Effects

Source: Pearson

P e Computer System Laboratory

Process Suspension

Q If the degree of multiprogramming is to be reduced,
one or more of the currently resident processes must
be swapped out

O Six possibilities

» Lowest-priority process

» Faulting process

» Last process activated

» Process with the smallest working set

» Largest process

» Process with the largest remaining execution window

P e Computer System Laboratory

Unix

0 Intended to be machine independent

» Early Unix: variable partitioning with no virtual memory
scheme

» Current implementations of UNIX and Solaris make use of two
separate memory management schemes

— Paging system for user processes and disk 1/O

— Kernel memory allocator to manage memory allocation for
the kernel

P e Computer System Laboratory

UNIX SVR4 Memory Management Form_%

R ARG

Page frame number

A &'::ﬁ-'" Slad- | Refe- alid Pra-
£ . ify | rence =
wrile -

() Pageable emry - ONE entry for each page

Swap device number

Device block number Type of storage

B Disk block descriptor One entry for each page

Figure 8.22

Reference Logical Block Pfdata
Pge: sate 0 LTt device mirm ber poinder
() Page frame data ble emry INAEXed by frame number and used
by the replacement algorithm
Reiproance Page/sorage One entry for each page (one table for each swap devic
count unit number

{d) Swap-use table emiry

UMIX 5VR4 Memory Management Formats

Source: Pearson

Computer System Laboratory

UNIX SVR4 Memory Management Parameters

L

Page Table Entry

Page frame number
Refers to frame in real memory.

Age
Indicates how long the page has been in memory without being referenced. The length and
contents of this field are processor dependent.

Copy on write
Set when more than one process shares a page. If one of the processes writes into the page, a
separate copy of the page must first be made for all other processes that share the page. This
feature allows the copy operation to be deferred until necessary and avoided in cases where it turns
out not to be necessary.

Modify
Indicates page has been modified.

Reference
Indicates page has been referenced. This bit is set to 0 when the page is first loaded and may be
periodically reset by the page replacement algorithm.

Valid
Indicates page is in main memory.

Protect
Indicates whether write operation is allowed.

Disk Block Descriptor

Swap device number
Logical device number of the secondary device that holds the corresponding page. This allows
more than one device to be used for swapping.

Device block number
Block location of page on swap device.

Type of storage
Storage may be swap unit or executable file. In the latter case, there is an indication as to whether Source: Pearson

the virtual memory to be allocated should be cleared first.

P e Computer System Laboratory

UNIX SVR4 Memory Management Parameters

i

_ g!“'_‘_

RS

Page Frame Data Table Entry

Page state
Indicates whether this frame is available or has an associated page. In the latter
case, the status of the page is specified: on swap device, in executable file, or
DMA in progress.

Reference count
Number of processes that reference the page.

Logical device
Logical device that contains a copy of the page.

Block number
Block location of the page copy on the logical device.

Pfdata pointer
Pointer to other pfdata table entries on a list of free pages and on a hash queue of

pages.
Swap-Use Table Entry

Reference count
Number of page table entries that point to a page on the swap device.

Page/storage unit number
Page identifier on storage unit.

Source: Pearson

Computer System Laboratory

Homework 1

a0 Exercise 8.1
d Exercise 8.2
d Exercise 8.6
d Exercise 8.9
d Exercise 8.15
d Exercise 8.16

P e Computer System Laboratory

	Operating System��Chapter 8. Virtual Memory
	Memory Hierarchy
	Levels of Memory Hierarchy
	Cache
	Fully Associative Cache
	Fully Associative Cache
	Direct Mapped Cache
	Direct Mapped Cache
	Set Associative Cache
	Set Associative Cache
	Cache Block Replacement
	3+1 Types of Cache Misses
	Miss Rates (SPEC92)
	Virtual Memory
	Virtual Memory
	Virtual Memory
	Paging and Segmentation
	Paging
	슬라이드 번호 19
	Virtual to Physical Address Translation
	Paging
	Paging
	Multi-Level Page Tables
	Two-Level Hierarchical Page Table
	Inverted Page Table
	Inverted Page Table
	TLB
	슬라이드 번호 28
	슬라이드 번호 29
	슬라이드 번호 30
	Page Size
	Paging Behavior of a Program
	Example: Page Sizes
	Segment Organization
	Address Translation
	Paged Segmentation
	Address Translation
	Virtual Memory Policies
	Fetch Policy
	Frame Locking
	Replacement Algorithms
	Combined Examples
	Clock Policy
	Comparison of Algorithms
	Page Buffering
	Working Set Management
	Replacement Scope
	Fixed Allocation, Local Scope
	Variable Allocation, Global Scope
	Variable Allocation, Local Scope
	슬라이드 번호 51
	 Page Fault Frequency (PFF)
	Cleaning Policy
	Multiprogramming
	Process Suspension
	Unix
	UNIX SVR4 Memory Management Format
	UNIX SVR4 Memory Management Parameters
	UNIX SVR4 Memory Management Parameters
	Homework 7

