
Operating System

Chapter 8. Virtual Memory

Lynn Choi
School of Electrical Engineering

Memory Hierarchy
 Motivated by

 Principles of Locality
 Speed vs. size vs. cost tradeoff

 Locality principle

 Spatial Locality: nearby references are likely
− Example: arrays, program codes
− Access a block of contiguous words

 Temporal Locality: the same reference is likely to occur soon
− Example: loops, reuse of variables
− Keep recently accessed data to closer to the processor

 Speed vs. Size tradeoff

 Bigger memory is slower: SRAM - DRAM - Disk - Tape
 Fast memory is more expensive

Levels of Memory Hierarchy

Registers

Cache

Main Memory

Disk

Network/Cloud

Instruction
Operands

Cache Line

Page

File

Capacity/Access Time Moved By Faster/Smaller

Slower/Larger

Program/Compiler
1- 16B

H/W
16 - 512B

OS
512B – 64MB

User
any size

100-KBs

KBs-MBs

100GBs

Infinite

MBs-GBs

Cache
 A small but fast memory located between processor

and main memory
 Benefits

 Reduce load latency
 Reduce store latency
 Reduce bus traffic (on-chip caches)

 Cache Block Allocation (When to place)
 On a read miss
 On a write miss

− Write-allocate vs. no-write-allocate

 Cache Block Placement (Where to place)
 Fully-associative cache
 Direct-mapped cache
 Set-associative cache

Fully Associative Cache

32KB cache (SRAM)

Virtual Address Space
32 bit VA = 4GB (DRAM)

0

228-1

0

Cache Block
(Cache Line)

Memory Block

A memory block can be placed into
any cache block location!

211-1

32b Word, 4 Word Cache Block

Fully Associative Cache

32KB DATA RAM

211-1

0

211-1

0

TAG RAM

3 0 31
tag

=

=

=
=

offset

V

Word & Byte select

Data out

Data to CPU

Advantages Disadvantages
 1. High hit rate 1. Very expensive
 2. Fast

Yes

Cache Hit

Direct Mapped Cache

32KB cache (SRAM)

Virtual Address Space
32 bit VA = 4GB (DRAM)

0

228-1

0 Memory Block

A memory block can be placed into
only a single cache block!

211-1

211

2*211

(217-1)*211

…..

Direct Mapped Cache

32KB DATA RAM

211-1

0

211-1

0

TAG RAM

3 0 31
index offset

V

Word &
Byte select

Data out

Data to CPU
Disadvantages Advantages
 1. Low hit rate 1. Simple HW
 2. Fast Implementation

tag

=

Cache Hit

Yes

14 4

Set Associative Cache

32KB cache (SRAM)

0

228-1

0 Memory Block

In an M-way set associative cache,
A memory block can be placed into
M cache blocks!

211-1

210

2*210

(218-1)*210

210

Way 0

Way 1

210-1

210 sets

210 sets

Set Associative Cache

32KB DATA RAM

210-1

0

210-1

0

TAG RAM

3 0 31
index offset

V

Word &
Byte select

Data out

Data to CPU

tag

=

Cache Hit

Yes
=

13 4

Wmux

Most caches are implemented as
set-associative caches!

Cache Block Replacement
 Random

 Just pick one and replace it
 Pseudo-random: use simple hash algorithm using address

 LRU (least recently used)
 need to keep timestamp
 expensive due to global compare
 Pseudo-LRU: use LFU using bit tags

 Replacement policy critical for small caches

3+1 Types of Cache Misses
 Cold-start misses (or compulsory misses): the first

access to a block is always not in the cache
 Misses even in an infinite cache

 Capacity misses: if the memory blocks needed by a
program is bigger than the cache size, then capacity
misses will occur due to cache block replacement.
 Misses even in fully associative cache

 Conflict misses (or collision misses): for direct-
mapped or set-associative cache, too many blocks can
be mapped to the same set.

 Invalidation misses (or sharing misses): cache blocks
can be invalidated due to coherence traffic

Miss Rates (SPEC92)

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

Virtual Memory

 Virtual memory
 Programmer’s view of memory
 A linear array of bytes addressed by the virtual address

 Physical memory
 Machine’s physical memory (DRAM)
 Also, called main memory

 Virtual address
 The address of a program

 Physical address
 The address of a DRAM

Virtual Memory

 Functions
 Large address space

− Easy to program
− Provide the illusion of infinite amount of memory
− Program code/data can exceed the main memory size
− Processes partially resident in memory

 Protection
− Privilege level
− Access rights: read/modify/execute permission

 Sharing
 Portability
 Increased CPU utilization

− More programs can run at the same time

Virtual Memory

 Require the following functions
 Memory allocation (Placement)
 Memory deallocation (Replacement)
 Memory mapping (Translation)

 Memory management

 Automatic movement of data between main memory and secondary
storage
− Done by operating system with the help of processor HW
− Main memory contains only the most frequently used portions of a

process’s address space
 Illusion of infinite memory (size of secondary storage) but access time

is equal to main memory
 Use demand paging

− Bring a page on demand

Paging and Segmentation

 Source: Pearson

Paging
 Divide address space into fixed size pages

 VA consists of (VPN, offset)
 PA consists of (PPN, offset)

 Map a virtual page to a physical page frame at runtime
 Each process has its own page table

 The page table contains mapping between VPN and PPN
 VPN is used as an index into the page table

 Page table entry (PTE) contains
 PPN
 Presence bit – 1 if this page is in main memory
 Dirty bit – 1 if this page has been modified
 Reference bits – reference statistics info used for page replacement
 Access control – read/write/execute permissions
 Privilege level – user-level page versus system-level page
 Disk address

 Internal fragmentation

Virtual Address and PTE

 Source: Pearson

Virtual to Physical Address Translation

 Source: Pearson

Paging

 Page table organization
 Linear: one PTE per virtual page
 Hierarchical: tree structured page table

− Page table itself can be paged due to its size
 For example, 32b VA, 4KB page, 16B PTE requires 16MB page table

− Page directory tables
PTE contains descriptor (i.e. index) for page table pages

− Page tables - only leaf nodes
PTE contains descriptor for page

 Inverted: PTEs for only pages in main memory
 Page table entries are dynamically allocated as needed

Paging

 Different virtual memory faults
 TLB miss - PTE not in TLB
 PTE miss - PTE not in main memory
 Page miss - page not in main memory
 Access violation
 Privilege violation

Multi-Level Page Tables
 Given:

 4KB (212) page size
 32-bit address space
 4-byte PTE

 Problem:
 Would need a 4 MB page table!

− 220 *4 bytes

 Common solution
 multi-level page tables
 e.g., 2-level table (P6)

− Level 1 table: 1024 entries, each of which points
to a Level 2 page table.
 This is called page directory

− Level 2 table: 1024 entries, each of which points
to a page

Level 1
Table

...

Level 2
Tables

Two-Level Hierarchical Page Table

 Source: Pearson

Inverted Page Table

 PTEs for only pages in main memory
 VPN is mapped into a hash value, which points to

an inverted page table entry
 Fixed proportion of physical memory is required for the page tables

regardless of the number of processes

Inverted Page Table

 Source: Pearson

TLB
 TLB (Translation Lookaside Buffer)

 Cache of page table entries (PTEs)
 On TLB hit, can do virtual to physical translation without accessing the page

table
 On TLB miss, must search the page table for the missing entry

 TLB configuration
 ~100 entries, usually fully associative cache
 sometimes mutil-level TLBs, TLB shootdown issue
 usually separate I-TLB and D-TLB, accessed every cycle
 Miss handling

− On a TLB miss, exception handler (with the help of operating system) search
page table for the missed TLB entry and insert it into TLB
 Software managed TLBs - TLB insert/delete instructions
 Flexible but slow: TLB miss handler ~ 100 instructions

− Sometimes, by HW - HW page walker

Address Translation with TLB

 Source: Pearson

DECStation 3100 Example

 Source: Morgan Kaufmann

TLB Organization

 Source: Pearson

Page Size
 The smaller the page size, the lesser the amount of

internal fragmentation
 However, more pages are required per process
 More pages per process means larger page tables
 For large programs in a heavily multiprogrammed environment

portion of the page tables of active processes must be in secondary
storage instead of main memory

 The physical characteristics of most secondary-memory devices
favor a larger page size for more efficient block transfer

Paging Behavior of a Program
 As page size increases, each page will contain locations further away from

recent references, increasing the page fault rate, but the fault rate begin to fall as
the page size approaches the size of the entire process

 Source: Pearson

Example: Page Sizes

 Source: Pearson

Segment Organization

 Segmentation allows a programmer to view a virtual
memory as a collection of segments

 Advantages
 Simplify the handling of growing data structures
 Allow program modules to be altered and recompiled independently
 Facilitate sharing among processes

 Segment table entry contains the starting address of
the corresponding segment in main memory and the
length of the segment
 A presence bit is needed to determine if the segment is already in main

memory
 A dirty bit is needed to determine if the segment has been modified since it

was loaded in main memory

Address Translation

 Source: Pearson

Paged Segmentation
 Virtual address space is broken up into a number of

segments. Each segment is broken up into a number of
fixed-sized pages.

 Source: Pearson

Address Translation

 Source: Pearson

Virtual Memory Policies

 Key issues: Performance
Minimize page faults

 Source: Pearson

Fetch Policy
 Demand Paging

 Bring a page into main memory only on a page miss
 Generate many page faults when process is first started
 Principle of locality suggests that as more and more pages are

brought in, most future references will be to pages that have recently
been brought in, and page faults should drop to a very low level

 Prepaging
 Pages other than the one demanded by a page fault are brought in
 If pages of a process are stored contiguously in secondary memory

it is more efficient to bring in a number of pages at one time
 Ineffective if extra pages are not referenced

Frame Locking

 When a frame is locked, the page currently
stored in that frame should not be replaced
OS kernel and key control structures are locked
 I/O buffers and time-critical areas may be locked
Locking is achieved by associating a lock bit with each

frame

Replacement Algorithms
 Optimal

Select the page for which the time to the next reference
is the longest

 LRU
 Select the page that has not been referenced for the longest

time

 FIFO
 Page that has been in memory the longest is replaced

 Clock
 Associate a use bit with each frame
 When a page is first loaded or referenced, the use bit is set to 1
 Any frame with a use bit of 1 is passed over by the algorithm
 Page frames visualized as laid out in a circle

Combined Examples

 Source: Pearson

Clock Policy

 Source: Pearson

Comparison of Algorithms

 Source: Pearson

Page Buffering
 A replaced page is not lost, but rather assigned to one

of two lists
 Free page list is a list of page frames available for reading in pages

− When a page is to be read in, the page frame at the head of the list is
used, destroying the page that was there

− When a unmodified page is to be replaced, it remains in memory and its
page frame is added to the tail of the free page list

 Modified page list is a list of page frames that have been modified
− When a modified page is to be written out and replaced, the page frame

is added to the tail of the modified page list
 Note that when a page is replaced, the page is not physically moved.

Instead, the PTE for this page is removed and placed in either the
free or modified page list

 Used in VAX VMS

Working Set Management

 The OS must decide how many pages to bring in
 The smaller the amount of memory allocated to each process, the

more processes can reside in memory
 Small number of pages loaded increases page faults
 Beyond a certain size, further allocations of pages will not effect the

page fault rate

 Fixed allocation
 Allocate a fixed number of frames to a process
 On a page fault, one of the pages of that process must be replaced

 Variable allocation
 Allow the number of page frames allocated to a process to be varied

over the lifetime of the process

Replacement Scope
 The scope of a replacement strategy can be global or local
 Local scope

 Choose only among the resident pages of the process generating the fault
 Global scope

 Consider all unlocked pages in main memory

 Source: Pearson

Fixed Allocation, Local Scope

 Necessary to decide ahead of time the amount of
allocation to a process

 If allocation is too small, there will be a high page
fault rate

 If allocation is too large, there will be too few
processes in main memory
 Increase processor idle time
 Increase time spent in swapping

Variable Allocation, Global Scope

 Easiest to implement
 Adopted in many operating systems

 OS maintains a list of free frames
 Free frame is added to working set of a process when

a page fault occurs
 If no frames are available, the OS must choose a page

currently in memory, except the locked frames

Variable Allocation, Local Scope

 When a new process is loaded into main memory,
allocate to it a certain number of page frames as its
working set

 When a page fault occurs, select the page to replace
from among the resident set of the process that suffers
the fault

 Reevaluate the allocation provided to the process and
increase or decrease it to improve overall
performance
 Decision to increase or decrease a working set size is based on the

assessment of future demands

Working Set of a Process

 Source: Pearson

 Page Fault Frequency (PFF)

 Requires a use bit to be associated with each page in
memory
 Bit is set to 1 when that page is accessed
 When a page fault occurs, the OS notes the virtual time since the

last page fault for that process
 If the amount of time since the last page fault is less than a

threshold, then a page is added to the working set of the process
 The strategy can be refined by using 2 thresholds: An upper

threshold is used to trigger a growth in the working set size while a
lower threshold is used to trigger a shrink in the working set size.

 Does not perform well during the transient periods
when there is a shift to a new locality

Cleaning Policy
 Concerned with determining when a modified page

should be written out to secondary memory
 Demand cleaning

 A page is written out to secondary memory only when it has been selected for
replacement

 Precleaning
 Write modified pages before they are replaced
 The pages may be modified again before they are replaced

Multiprogramming

Swapping Thrashing

 Determines the
number of processes
that will be resident
in main memory
 Multiprogramming

level
 Too few processes

lead to swapping
 Too many processes,

lead to insufficient
working set size,
resulting in thrashing
(frequent faults)

 Source: Pearson

Process Suspension

 If the degree of multiprogramming is to be reduced,
one or more of the currently resident processes must
be swapped out

 Six possibilities
 Lowest-priority process
 Faulting process
 Last process activated
 Process with the smallest working set
 Largest process
 Process with the largest remaining execution window

Unix
 Intended to be machine independent

 Early Unix: variable partitioning with no virtual memory
scheme

 Current implementations of UNIX and Solaris make use of two
separate memory management schemes
− Paging system for user processes and disk I/O
− Kernel memory allocator to manage memory allocation for

the kernel

UNIX SVR4 Memory Management Format

One entry for each page

One entry for each page

Indexed by frame number and used
by the replacement algorithm

One entry for each page (one table for each swap device

 Source: Pearson

UNIX SVR4 Memory Management Parameters

 Source: Pearson

UNIX SVR4 Memory Management Parameters

 Source: Pearson

Homework 7
 Exercise 8.1
 Exercise 8.2
 Exercise 8.6
 Exercise 8.9
 Exercise 8.15
 Exercise 8.16

	Operating System��Chapter 8. Virtual Memory
	Memory Hierarchy
	Levels of Memory Hierarchy
	Cache
	Fully Associative Cache
	Fully Associative Cache
	Direct Mapped Cache
	Direct Mapped Cache
	Set Associative Cache
	Set Associative Cache
	Cache Block Replacement
	3+1 Types of Cache Misses
	Miss Rates (SPEC92)
	Virtual Memory
	Virtual Memory
	Virtual Memory
	Paging and Segmentation
	Paging
	슬라이드 번호 19
	Virtual to Physical Address Translation
	Paging
	Paging
	Multi-Level Page Tables
	Two-Level Hierarchical Page Table
	Inverted Page Table
	Inverted Page Table
	TLB
	슬라이드 번호 28
	슬라이드 번호 29
	슬라이드 번호 30
	Page Size
	Paging Behavior of a Program
	Example: Page Sizes
	Segment Organization
	Address Translation
	Paged Segmentation
	Address Translation
	Virtual Memory Policies
	Fetch Policy
	Frame Locking
	Replacement Algorithms
	Combined Examples
	Clock Policy
	Comparison of Algorithms
	Page Buffering
	Working Set Management
	Replacement Scope
	Fixed Allocation, Local Scope
	Variable Allocation, Global Scope
	Variable Allocation, Local Scope
	슬라이드 번호 51
	 Page Fault Frequency (PFF)
	Cleaning Policy
	Multiprogramming
	Process Suspension
	Unix
	UNIX SVR4 Memory Management Format
	UNIX SVR4 Memory Management Parameters
	UNIX SVR4 Memory Management Parameters
	Homework 7

