Mobile Communications (KECE425)

Lecture Note 23
5-28-2014
Prof.Young-Chai Ko

Summary

- Complexity issues of diversity systems
- ADC and Nyquist sampling theorem
- Transmit diversity
- Channel is known at the transmitter (Closed-loop transmit diversity: CLTD)
- Channel is unknown at the transmitter (Space-time block coding: STBC)
- Transmit-Receive diversity (Maximal ratio transmission)
- Multi-user opportunistic diversity
- MIMO channel capacity

Maximal Ratio Transmission (MRT)

- MRT is also called multiple input multiple output (MIMO)-MRC.

- MIMO channel can be represented in matrix form:

$$
\mathbf{H}=\left[\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 T} \\
h_{21} & h_{22} & \cdots & h_{2 T} \\
\vdots & \vdots & \vdots & \vdots \\
h_{R 1} & h_{R 2} & \cdots & h_{R T}
\end{array}\right]
$$

- Vector representation

$$
\begin{aligned}
\mathbf{w}_{t} & =\left[\begin{array}{llll}
w_{t 1} & w_{t 2} & \cdots & w_{t T}
\end{array}\right]^{T} \\
\mathbf{w}_{r} & =\left[\begin{array}{llll}
w_{r 1} & w_{r 2} & \cdots & w_{r R}
\end{array}\right]^{T} \\
\mathbf{n} & =\left[\begin{array}{llll}
n_{1} & n 2 & \cdots & n_{R}
\end{array}\right]^{T}
\end{aligned}
$$

- Received signal:

$$
\begin{aligned}
r_{1} & =\left(w_{t, 1} h_{11}+w_{t, 2} h_{12}+\cdots+w_{t, T} h_{1 T}\right) s+n_{1} \\
r_{2} & =\left(w_{t, 1} h_{21}+w_{t, 2} h_{22}+\cdots+w_{t, T} h_{2 T}\right) s+n_{2} \\
& \vdots \\
r_{R} & =\left(w_{t, 1} h_{R 1}+w_{t, 2} h_{R 2}+\cdots+w_{t, T} h_{R T}\right) s+n_{R}
\end{aligned}
$$

- Received signal in vector form:

$$
\mathbf{r}=\mathbf{H} \mathbf{w}_{t} s+\mathbf{n}
$$

- Combined signal:

$$
r_{t}=\mathbf{H r}
$$

- Optimal receive weight vector \mathbf{w}_{r} can be easily shown to be given as

$$
\mathbf{w}_{r}^{H}=c\left(\mathbf{H} \mathbf{w}_{t}\right)^{H}=c \mathbf{w}_{t}^{H} \mathbf{H}^{H}
$$

where $(\cdot)^{H}$ denote the Hermitian operation.

- In this case, the received signal can be written as

$$
\begin{aligned}
r_{t} & =\mathbf{w}_{r}^{H} \mathbf{r} \\
& =\mathbf{w}_{r}^{H}\left(\mathbf{H} \mathbf{w}_{t}+\mathbf{n}\right) \\
& =c \mathbf{w}_{t}^{H} \mathbf{H}^{H} \mathbf{H} \mathbf{w}_{t} s+c \mathbf{w}_{t}^{H} \mathbf{H}^{H} \mathbf{n}
\end{aligned}
$$

- SNR of the received signal
- Received signal can be written as

$$
r_{t}=c \mathbf{w}_{t}^{H} \mathbf{H}^{H} \mathbf{H} \mathbf{w}_{t} s+c \mathbf{w}_{t}^{H} \mathbf{H}^{H} \mathbf{n}
$$

- SNR of r_{t}

$$
\gamma_{t}=\frac{1}{\sigma_{n}^{2}} \mathbf{w}_{t}^{H} \mathbf{H}^{H} \mathbf{H} \mathbf{w}_{t}
$$

- Optimal transmit weight vector, $\mathbf{w}_{t}^{\text {opt }}$

$$
\begin{aligned}
\mathbf{w}_{t}^{\mathrm{opt}} & =\max _{\mathbf{w}_{t}} \gamma_{t} \\
& =\max _{\mathbf{w}_{t}} \frac{1}{\sigma_{n}^{2}} \mathbf{w}_{t}^{H} \mathbf{H}^{H} \mathbf{H} \mathbf{w}_{t} \\
& =\max _{\mathbf{w}_{t}} \mathbf{w}_{t}^{H} \mathbf{H}^{H} \mathbf{H} \mathbf{w}_{t}
\end{aligned}
$$

- Find the optimal weight vector \mathbf{w}_{t} to maximize the SNR γ_{t}.

$$
\mathbf{w}_{t}^{\mathrm{opt}}=\max _{\mathbf{w}_{t}} \mathbf{w}_{t}^{H} \mathbf{H}^{H} \mathbf{H} \mathbf{w}_{t}
$$

- We can solve this problem by making use of Rayleigh-Ritz theorem.
- Rayleigh-Ritz theorem

$$
\mathbf{x}^{H} \mathbf{A x} \leq \lambda_{\max }\|\mathbf{x}\|^{2}
$$

where \mathbf{A} is the Hermitian matrix, \mathbf{x} is an y non-zero complex vector and $\lambda_{\text {max }}$ is the largest eigenvalue of \mathbf{A}.

- Equality holds if and only if \mathbf{x} is the eigenvector corresponding to $\lambda_{\max }$.
- Based on Rayleigh-Ritz theorem, we can find the optimal weight vector $\mathbf{w}_{t}^{\text {opt }}$, we can find the optimal weight vector as

$$
\mathbf{w}_{t}^{\mathrm{opt}}=\sqrt{\Omega} \mathbf{U}_{\max }
$$

where $\mathbf{U}_{\text {max }}$ is the eigenvector corresponding to the largest eigenvalue of the quadratic form $\mathbf{F}=\mathbf{H}^{H} \mathbf{H}$ and $\mathbf{U}_{\max }^{H} \mathbf{U}_{\max }=\mathbf{I}$

- Combined SNR with the optimum weight vector

$$
\gamma_{t}=\frac{\Omega \lambda_{\max }}{\sigma_{n}^{2}}
$$

- Example for $T=3$ and $R=3$
- Assume that channel matrix for a certain duration within coherence time is given as

$$
\begin{aligned}
H & =\left[\begin{array}{cccc}
1.9 e^{j \frac{\pi}{5}} & 0.2 e^{j \frac{\pi}{10}} & 0.6 e^{-j \frac{\pi}{6}} \\
0.5 e^{-j \frac{\pi}{4}} & 1.6 e^{-j \frac{\pi}{18}} & 0.5 e^{-j \frac{\pi}{6}} \\
1.4 e^{-j \frac{\pi}{10}} & 1.8 e^{j \frac{\pi}{10}} & 0.8 e^{j \frac{\pi}{16}}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1.5371+j 1.1168 & 0.1902+j 0.0618 & 0.5196-j 0.3 \\
0.3536-j 0.3536 & 1.5757-j 0.2778 & 0.4330-j 0.25 \\
1.3315-j 0.4326 & 1.7119+j 0.5562 & 0.7846+j 0.1561
\end{array}\right]
\end{aligned}
$$

- Then we can calculate the Wishart matrix F as

$$
\begin{aligned}
F & =\mathbf{H}^{H} \mathbf{H} \\
& =\left[\begin{array}{cccc}
1.9 e^{-j \frac{\pi}{5}} & 0.4 e^{-j \frac{\pi}{4}} & 1.4 e e^{j \frac{\pi}{10}} \\
0.2 e^{-j \frac{\pi}{10}} & 1.6 e^{j \frac{\pi}{18}} & 1.8 e^{-j \frac{\pi}{10}} \\
0.6 e^{j \frac{\pi}{6}} & 0.5 e^{j \frac{\pi}{6}} & 0.8 e^{-j \frac{\pi}{16}}
\end{array}\right]\left[\begin{array}{ccc}
1.9 e^{j \frac{\pi}{5}} & 0.2 e^{j \frac{\pi}{10}} & 0.6 e^{-j \frac{\pi}{6}} \\
0.5 e^{-j \frac{\pi}{4}} & 1.6 e^{-j \frac{\pi}{18}} & 0.5 e^{-j \frac{\pi}{6}} \\
1.4 e^{-j \frac{\pi}{10}} & 1.8 e^{j \frac{\pi}{10}} & 0.8 e^{j \frac{\pi}{16}}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
5.82 & 3.0554+j 1.8227 & 1.6824-j 0.4295 \\
3.0554-j 1.8227 & 5.84 & 2.2621-j 0.5320 \\
1.6824+j 0.4295 & 2.2621+j 0.532 & 1.25
\end{array}\right]
\end{aligned}
$$

- Now let us find the eigenvectors and eigenvalues of F

$$
F \mathbf{x}=\lambda \mathbf{x} \quad \text { or equivalently } \quad(F-\lambda I) \mathbf{x}=0
$$

where λ is the eigenvector corresponding to the eigenvector \mathbf{x}.

* λ can be found by solving the characteristic equation:

$$
\begin{gathered}
\operatorname{det}(F-\lambda I)=0 \\
F-\lambda I=\left[\begin{array}{ccc}
5.82-\lambda & 3.0554+j 1.8227 & 1.6824-j 0.4295 \\
3.0544-j 1.8227 & 5.84-\lambda & 2.2621-j 0.5320 \\
1.6824+j 0.4295 & 2.2621+j 0.532 & 1.25-\lambda
\end{array}\right]
\end{gathered}
$$

- We can calculate the determinant of $F-\lambda I$ as

$$
\operatorname{det}(F-\lambda I)=(5.82-\lambda) \operatorname{det}\left[\begin{array}{cc}
5.84-\lambda & 2.2621-j 0.5320 \\
2.2621+j 0.532 & 1.25-\lambda
\end{array}\right]
$$

$$
\begin{aligned}
& -(3.0554+j 1.8227) \operatorname{det}\left[\begin{array}{cc}
3.0544-j 1.8227 & 2.2621-j 0.5320 \\
1.6824+j 0.4295 & 1.25-\lambda
\end{array}\right] \\
& +(1.6824-j 0.4295) \operatorname{det}\left[\begin{array}{cc}
3.0544-j 1.8227 & 5.84-\lambda \\
1.6824+j 0.4295 & 2.2621+j 0.532
\end{array}\right]
\end{aligned}
$$

is the third-order polynomial of λ with the weight of real value in each order.

$$
\begin{aligned}
p(\lambda)= & (5.82-\lambda)[(5.84-\lambda)(1.25-\lambda)-(2.2621-j 0.5320)(2.2621+j 0.532)] \\
& -(3.0544+j 1.8227)[(3.0544-j 1.8227)(1.25-\lambda)-(2.2621-j 0.5320)(1.6824+j 0.4295)] \\
& +(1.6824-j 0.4295)[(3.0544-j 1.8227)(2.2621+j 0.532)-(5.84-\lambda)(1.6824+j 0.4295] \\
= & -\lambda^{3}+a \lambda^{2}+b \lambda+c
\end{aligned}
$$

where a, b, and c are real constants.

- Solving $p(\lambda)=0$, we have

$$
\begin{aligned}
& \lambda_{1}=10.246 \\
& \lambda_{2}=2.5885 \\
& \lambda_{3}=0.0755
\end{aligned}
$$

* So the maximum eigenvalue is $\lambda_{\max }=10.246$.
* The eigenvector corresponding to $\lambda_{\max }$ can be found as

$$
F \mathbf{x}=\lambda_{\max } \mathbf{x}
$$

Sbstituting F and $\lambda_{\text {max }}$ we have

$$
\left[\begin{array}{ccc}
5.82 & 3.0554+j 1.8227 & 1.6824-j 0.4295 \\
3.0554-j 1.8227 & 5.84 & 2.2621-j 0.5320 \\
1.6824+j 0.4295 & 2.2621+j 0.532 & 1.25
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=10.246\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Then we have three simultaneous equations given as

$$
\begin{aligned}
(3.0554+j 1.8227) x_{2}+(1.6824-j 0.4295) x_{3} & =4.426 x_{1} \\
(3.0554-j 1.8227) x_{1}+(2.2621-j 0.5320) x_{3} & =4.406 x_{2} \\
(1.6824+j 0.4295) x_{1}+(2.2621+j 0.532) x_{2} & =8.9960 x_{3}
\end{aligned}
$$

Then we can find the maximum eigenvector given as

$$
\mathbf{x}=\left[\begin{array}{c}
0.5888+j 0.3048 \\
0.6874 \\
0.2684+j 0.1258
\end{array}\right]
$$

where we normalize such that $\|\mathbf{x}\|^{2}=1$.

- Then, we have the weight vector in the transmitter

$$
\mathbf{w}_{t}=\left[\begin{array}{c}
0.5888+j 0.3048 \\
0.6874 \\
0.2684+j 0.1258
\end{array}\right]
$$

- The receive weight vector can be found as $\mathbf{w}_{r}^{H}=\left(\mathbf{H w}_{t}\right)^{H}$ which can be calculated as

$$
\mathbf{w}_{r}^{H}=\left[\begin{array}{l}
0.8725+j 1.1535 \\
1.5468+j 0.3040 \\
2.2836+j 0.6741
\end{array}\right]^{H}
$$

- Also note that the SNR of the combined signal can be written as

$$
\gamma_{t}=\frac{\lambda_{\max } E_{s}}{N_{0}}
$$

- In the previous example, 3×3 MIMO channel can be remodeled as 1×1 SISOeigen-channel (maximum eigen-channel, to be exactly speaking) with the channel $\sqrt{\lambda_{\text {max }}}$

$$
r_{t}=\sqrt{\lambda_{\max }} s+z
$$

- Note that $\lambda_{\max }$ is the maximum eigenvalue of the matrix $F=\mathbf{H}^{H} \mathbf{H}$ and thus it is the random variable.
- BER/SER Performance of MIMO-MRC

$$
\begin{aligned}
P(E) & =\int_{0}^{\infty} P\left(E \mid \gamma_{t}\right) p_{\gamma_{t}}\left(\gamma_{t}\right) d \gamma \\
& =\int_{0}^{\infty} P\left(E \left\lvert\, \frac{\lambda_{\max } E_{s}}{N_{0}}\right.\right) p_{\lambda_{\max }}\left(\lambda_{\max }\right) d \lambda_{\max }
\end{aligned}
$$

- Find the PDF of $\lambda_{\text {max }}$ is not simple problem but it is already solved long time ago for both the Rayleigh channel and the Ricean channel cases.

Multi-User Opportunistic Diversity

- We often need to select users if there are more than users to support the service, for a certain limited frequency (or/and time) resource.
- Example:
- There are 50 MHz bandwidth for the service and each user takes 5 MHz bandwidth. In this case, we can support 10 users for a given time.
- However, more than 50 users, saying 100 users, are willing to communicate at the same time, what is the best way to select users among 100 users?
- Multi-user opportunistic diversity scheme is simply to select the users with the strongest SNRs.
- Schematic concept of multi-user diversity (MUD).

- Choose the user which has the largest SNR among K users.
- If one user is selected out of K users at every selection period, the selected user k^{*} can be written as

$$
k^{*}=\max _{k}\left(\gamma_{1}, \gamma_{2}, \cdots, \gamma_{K}\right)
$$

- By doing this, we can improve the channel capacity such as

$$
\begin{aligned}
C & =E\left[\log _{2}\left(1+\gamma_{k}^{*}\right)\right] \\
& =\int_{0}^{\infty} \log _{2}\left(1+\gamma_{k}^{*}\right) p_{\gamma_{k^{*}}}\left(\gamma_{k^{*}}\right) d \gamma_{k^{*}}
\end{aligned}
$$

- Multi-user diversity gain

Channel Capacity in Diversity MIMO

$$
C=\log _{2}\left(1+\gamma_{t}\right) \quad[\mathrm{bps} / \mathrm{Hz}]
$$

Channel capacity is logarithmically increasing versus SNR which is very slow rate of increasing.

Degree of freedom is 1 .

$$
C=\log _{2}\left(1+\gamma_{t}\right) \quad[\mathrm{bps} / \mathrm{Hz}]
$$

