Operating System

Chapter 6. Concurrency:
Deadlock and Starvation

Lynn Chol
School of Electrical Engineering

@ HERGFR Computer System Laboratory

Deadlock

O Definition

» A set of processes is deadlocked when each process in the set is blocked
awaiting an event (or a resource) that can only be triggered (released) by
another blocked process in the set

O Examples
» 4 cars arrive at a four-way stop

O Two general categories of resources
» Reusable resource
— Can be safely used by only one process at a time and is not depleted by that use
— Examples: processors, memory, 1/O devices, files, databases and semaphores
» Consumable resource
— Can be created (produced) and destroyed (consumed)
— Examples: interrupts, signals, messages, data in 1/O buffers

P e Computer System Laboratory

Potential Deadlock

)
T o

®
O

Source: Pearson

AR R Computer System Laboratory

Actual Deadlock

Source: Pearson

AR RS Computer System Laboratory

Reusable Resource Example

Process P Process Q
Step Action Step Action
Py Request (D) qq Request (T)
P, Lock (D) q, Lock (T)
P> Request (T) qQ, Request (D)
Ps Lock (T) q; Lock (D)
P, Perform function Qy Perform function
Ps Unlock (D) Qs Unlock (T)
Pe Unlock (T) Qe Unlock (D)

Figure 6.4 Example of Two Processes Competing for Reusable Resources

PoP1d0d,P,0, leads to a deadlock!

Source: Pearson

P e Computer System Laboratory

Consumable Resource Example &

O Consider a pair of processes, in which each process
attempts to receive a message from the other process
and then send a message to the other process

d Deadlock occurs if the Receive is blocking

P1 P2
Receive (P2); Receive (P1);
Send (P2, M1); Send (P1, M2);

P e Computer System Laboratory

Deadlock Detection, Prevention, Avoidanc

RS

it g
Approach D z}llocatlon Different Schemes Major Advantages . LRl
Policy Disadvantages
eInefficient
*Works well for *Delays process
Requesting all resources at processes that perform a | initiation
once) ’ : single burst of activity | *Future resource
*No preemption requirements must
necessary be known by
processes
Conservative; *Convenient when
Prevention | undercommits applied to resources P
: reempts more
resources Preemption whose state can be p
often than necessary
saved and restored
easily
*Feasible to enforce via
mpile-time checks :
ol e sk s
Resource ordering ceds t(i' u - ¢ incremental
computation since. resource requests
problem is solved in
system design
=Future resource
Midway between that . . requirements must
. . Manipula find at least | *No preemption 4))
Avoidance | of detection and on?: Sg;;:: t:t;(J datlea n:cgsfs:zr phio be known by OS
prevention P y *Processes can be
blocked for long
periods
Very liberal; *Never delays process
Detection requested resources Invoke periodically to test | initiation eInherent preemption

are granted where
possible

for deadlock

eFacilitates online
handling

losses
Source: Pearson

Computer System Laboratory

Resource Allocation Graphs . "

Requests Held Iy
P1 - > ® Ra P1 - ® Ra
(a) Resouce is requested (b) Resource is held
Ra Ra
.\ ® \.
\\EH\H s 2 'y/): \\QL_:‘\-': ‘{'/0;6‘
Q-?‘L\ Q-?‘L\
P1 P2 P1 P2
2 2
v LQ‘E 2 Léﬁ’-
s, f".?‘ S s, "".{5‘ S
e oo
Rb Rb
(¢) Circular wait (d) No deadlock

Source: Pearson

R R Computer System Laboratory

Conditions for Deadlock

3 IMutual exclusion
» Only one process may use a resource at a time

Q Hold and wait
» A process may hold allocated resources while waiting for the other resources

O No preemption
» No resource can be forcibly removed from a process holding it

Q Circular wait

» A closed chain of processes exists such that each process holds at least one
resource needed by the next process in the chain

P e Computer System Laboratory

Circular Wait Example

BN

Pl P2 P3 P4
A A A
L o o

Ra Rb Re Rd

Figure 6.6 Resource Allocation Graph for Figure 6.1b

Source: Pearson

R R Computer System Laboratory

Three Approaches for Deadlocks &

0O Deadlock prevention
» Adopt a policy that eliminates one of the conditions 1 through 4

O Deadlock avoidance

» Make the appropriate choices dynamically based on the current state of
resource allocation

0O Deadlock detection

» Allow the deadlock to occur, attempt to detect the presence of deadlock, and
recover if a deadlock is detected

P e Computer System Laboratory

Deadlock Prevention

Q MMutual exclusion
» We cannot prevent this first condition

— If access to a resource requires mutual exclusion, then mutual exclusion must be
supported by the system

Q Hold and wait
» Require that a process request all of its required resources at once and block
the process until all the requests can be granted simultaneously
O No preemption

» If a process holding certain resources is denied a further request, that process
must release its original resources and request them again

» Alternatively, if a process requests a resource that is currently held by another
process, OS may preempt the second process
Q Circular wait
» Define a linear ordering of resource types

» If a process has been allocated resources of type R, than it may subsequently
request only those resources of types following R in the ordering

P e Computer System Laboratory

Deadlock Avoidance

0O Deadlock avoidance

» A decision is made dynamically whether the current resource allocation
request will, if granted, potentially lead to a deadlock

— Requires knowledge of future resource requests

O Two approaches
» Process initiation denial
— Do not start a process if its demands may lead to a deadlock
» Resource allocation denial

— Do not grant a resource request to a process if this allocation might lead to a
deadlock

QO Advantages

» It is not necessary to preempt and rollback processes, as in deadlock
detection

» Itis less restrictive than deadlock prevention

P e Computer System Laboratory

Process Initiation Denial

— Consider a system of n processes and m different types of resources
— Let’s define the following vectors and matrices:

» Resource= R = (R, R, ..., R,)
» Available=V = (V,V,,...,V,)

—Cll C12 LR R} Clm
» Claim= C = |C, Cyp C,
Cnl Cpo .- Cnm
—All A12 CRE T) Alm—
» Allocation = A = | Ay Ay ... Ay
Ag Ay, 0 A

P e Computer System Laboratory

Process Initiation Denial Jﬂ@

O The following relationship holds
> Ri=V,+ ¥, A;forallj
— All resources are either available or allocated.
» C; < Riforalli,j
— No process can claim more than total amount of resources
» A; < Cjforalli, j

— No process is allocated more resources than it originally claimed

QO Policy: start a new process P, ., only if

» R 2 Cppuqy+ 2ij=q Cj forallj

— A process is only started if the maximum claim of all current processes plus those of the
new process can be met

R R Computer System Laboratory

Resource Allocation Denial

O Referred to as the banker’s algorithm

» State of the system reflects the current allocation of resources to processes

» Safe state is one in which there is at least one sequence of resource
allocations to processes that does not result in a deadlock

» Unsafe state is a state that is not safe

P e Computer System Laboratory

Determination of a Safe State

O System state consists of 4 processes and 3 resources

Rl R2 R3 Rl R2 R3 Rl R2 R3
Pl 3 2 2 Pl l 0 0 Pl 2 i 2
P2 6 1 3 2 6 1 2 2 0 0 |
P3 3 l 4 P3 2 1 1 P3 1 0 3
P4 4 2 2 P4 0 0 2 P4 4 2 0
Claim mamx C Allocation matnix A C-A
Rl R2 E3 Rl R2 R3
9 3 6 0 1 1
Resource vector R Available vector V

(a) Initial state

Source: Pearson

A Is this a safe state?

» Can any of 4 processes run to completion?
— P2 can run to completion!

P e Computer System Laboratory

P2 Runs to Completion

Q After P2 completes, P2 releases its resources

Rl R2 R3 Rl R R3 Rl R R3
P1 3 2 2 Pl 1 0 0 Pl 4 f 2
P2 0 0 0 2 0 0 0 2 0 0 0
P3 3 1 4 P3 2 1 | P3 1 0 3
P4 4 2 2 P4 0 0 2 P4 4 Z 0
Claim matmix C Allocation matrx A C-A
Rl R2 R3 Rl R? R3
9 3 6 4 2 3
Resource vector R Avallable vector V

(h) P2 runs to completion

Source: Pearson

QO Then, we can run any of P1, P3, or P4
O Assume we select Pl

P e Computer System Laboratory

Rl R2 R3 Rl R2 R3
Pl 0 0 0 Fl 0 0 0 Fl
P2 0 0 0 fi 0 0 0 fi
P3 3 1 4 Fi 2 1 | Fi
P4 4 2 2 P4 0 0 2 P4
Claim mamix C Allocation matrx A
Rl R2 R3 El R2 R3
O 3 f 7 2 3
Resouree vector R Available vector V
(¢) P1 runs to completion
Source: Pearson
i A

Rl R2 R3

0 0 0

0 0 0

1 0 3

4 2 0
C-A

Computer System Laboratory

"
Rl R2 R3 R1 R2 E3 Rl R2 R3
Pl 0 0 0 Pl 0 0 0 Pl 0 0 0
P2 0 0 0 2 0 0 G 2 0 0 0
P3 0 0 0 P3 0 0 0 P3 0 0 0
P4 4 2 2 P4 0 0 2 P4 4 2 0
Claim mamix C Allocation matnix A C-A
Rl R2 R3 Rl R2 R3
[9 1 3 [6 | I 3] 4]
Resource vector R Available vector V
(d) P3 runs to completion
Source: Pearson
P e Computer System Laboratory

Pl

P3
P4

Pl

P3
P4

RS

R1 RZ R3 R1 R2 R3
3 2 2 P1 1 0 0 Pl
6 1 3 P2 5 1 1 P2
3 1 4 P3 2 1 1 P3
4 2 2 P4 0 0] 2 P4
Claim matrix C Allocation matrix A
R1 R2 R3 Rl R2 R3
g 3 6 1 1 2
Rezource vector R Avvailable vector V
{a) Initial state
Rl R2 E3 R1 R2 R3
3 2 2 P1 2 0 1 Pl
6 1 3 P2 5 1 1 P2
3 1 4 P3 2 1 1 P3
4 2 2 P4 0 o 2 P4

Claim matrix C Allocation matrix A

R1 R2 E3 F1 R2

R3

2] 3 6 0 1

1

Eesource vector R

(b) P1 requests one unit each of R1 and R3

O Is this a safe state?

Available vector V

2 2 2
1] 2
1 0 3
4 2 0
C-A

=== | =
L N (e i (e) S J

[) ROV I O B

Source: Pearson

Computer System Laboratory

Deadlock Avoidance Logic

struct state |
int resocurce[m];
int available[m];
int claim[n][m];
int alloc[n][m];

(a) global data structures

if (alloc [i,*] + regquest [*] > claim [i,*])

< arror > /* total request > claim*/
else if (reguest [*] > available [*])

< suspend process >}

else { /* simulate alloc */
< define newstate by:
allec [i,*] = alloc [i,*] + reguest [*];
available [*] = available [*] - reguest [*] >;

}

if (safe (newstate))
< carry out allocation =>;
else |
< restore original state >;
< suspend process >}

(b) resource alloc algorithm

Source: Pearson

P e Computer System Laboratory

Deadlock Avoidance Logic

boolean safe (state 5) {
int currentavail[m];
process rest[<number of processes>];
currentavail = available;
rest = {all processes};
possible = true;
while (possible) {
<find a process Py in rest such that
claim [k,*] — alloc [k,*] <= currentavail;>
if (found) { /* simulate execution of Py */
currentavail = currentavail + alloc [k,*];
rest = rest - {Pk}:

t

else possible = false;
}
return (rest == null);

(c) test for safety algorithm (banker's algorithm)

Figure 6.9 Deadlock Avoidance Logic

Source: Pearson

HmRRG Computer System Laboratory

Deadlock Detection

O Deadlock prevention is very conservative
» Limit access to resources by imposing restrictions on processes

O Deadlock detection does the opposite
» Resource requests are granted whenever possible

Q A check for deadlock can be made as frequently as
each resource request, or less frequently depending on
how likely it is for a deadlock to occur

P e Computer System Laboratory

Deadlock Detection Algorithm

0 Instead of Claim (C), a Request (Q) matrix is defined
> Q; represents the amount of resources of type | requested by process |

Q Initially, all processes are unmarked (deadlocked)

O The algorithm proceeds by marking processes that are
not deadlocked.

O Then, the following steps are performed
1. Mark each process that has a row in the Allocation matrix of all zeros
2. Initialize a temporary vector W to equal the Available vector

3. Find an index i such that process is currently unmarked and the it row of Q
Is less than or equal to W. If no such row is found, terminate the algorithm

4. If such a row is found, mark process i and add the corresponding row of the
allocation matrix to W. Return to step 3

O A deadlock exists if and only if there are unmarked
processes at the end of the algorithm

P e Computer System Laboratory

Deadlock Detection Algorithm

RI R2 R3 R4 RS Rl R2 R3 R4 RS RI R2 R3 R4 RS
PLI1O | 1]10]0]1 PLI1T |0} 1T]1]0 211|121
P210 10| 1]0|1 P21 11 0]0]0 Resource vector
P3O0 |0]0 1 P3O0 |00 |1]0
PA1 T 10101 P41 0| 0]0]0]0 RI R2 R3 R4 RS

Request matrix Q Allocation matrix A 0|10 0]0/|1

Allocation vector

Figure 6.10 Example for Deadlock Detection
Source: Pearson
» Mark P4 because P4 has no allocated resources
» SetW=(00001)
» The request of P3 is less than or equal to W, so mark P3 and set
- W=W+((00010)=(00011)

» No other unmarked process has a row in Q that is less than or equal to W.

Therefore, terminate the algorithm.

P e Computer System Laboratory

Deadlock Recovery

O Recovery options in order of increasing sophistication
» Abort all deadlocked processes.
— The most common solution adopted by OS
» Backup each deadlocked process to a previous checkpoint and restart
— Require rollback and restart mechanism
» Successively abort deadlocked process until deadlock no longer exists
— The detection algorithm must be re-invoked
» Successively preempt resources until deadlock no longer exists

— A process that has a resource preempted must be rolled back to a prior point
before its acquisition of the resource

P e Computer System Laboratory

Dining Philosophers Problem

O No two philosophers can use the same fork at the same time
» Mutual exclusion

O No philosopher must starve to death

» Avoid starvation and deadlock @

Source: Pearson

Figure 6.11 Dining Arrangement for Philosophers

P e Computer System Laboratory

Solution using Monitor

il

moniteor dining controller;
cond ForkReady([5]; /* condition wvariable for synchronization */
boolean fork[5] = {true}; /* availability status of each fork */

void get forks(int pid) /* pid is the philosopher id number */
{
int left = pid;
int right = (++pid) % 5;
/*grant the left fork*/
if (!fork(left)
cwalit (ForkReady[left]); /* gueue on condition variable */
fork(left) = false;
/*grant the right fork#*/
if (!fork(right)
cwait(ForkReady(right); /* gueue on condition wvariable */
fork(right) = false:
}
veoid release forks(int pid)
{
int left = pid;
int right = (++pid) % 5;
/*release the left fork*/
if (empty(ForkReady[left]) /*no one is waiting for this fork */
fork(left) = true;
else /* awaken a process waiting on this fork */
csignal (ForkReady[left]);
/*release the right fork*/
if (empty(ForkReady[right]) /*no one 1s waiting for this fork */
fork(right) = true;
else /* awaken a process waiting on this fork */
csignal (ForkReady[right]);

}

void philosopher[k=0 to 4] /* the five philosopher clients */
{
while (true) {
<think>;
get forks(k); /* client requests two forks wia monitor */
<eat spaghetti>;
release forks(k); /* client releases forks wia the monitor */

Source: Pearson

Figure 6.14 A Solution to the Dining Philosophers Problem Using a Monitor
HmRRG Computer System Laboratory

UNIX Concurrency Mechanisms
O UNIX provides a variety of mechanisms for interprocess
communication and synchronization including:
» Pipes
— First-in-first-out queue, written by one process and read by another

— Implemented by a circular buffer, allowing two processes to communicate
on the producer-consumer model

— Example: Is | more, ps | sort, etc.

» Messages

— UNIX provides msgsnd and msgrcv system calls for processes to engage in
message passing

— A message is a block of bytes
— Each process is associated a message queue, which functions like a mailbox

P e Computer System Laboratory

UNIX Concurrency Mechanisms

» Shared memory
— Common block of virtual memory shared by multiple processes
— Fastest form of interprocess communication
— Mutual exclusion is provided for each location in shared-memory
— A process may have read-only or read-write permission for a memory location

» Semaphores
— Generalization of the semWait and semSignal primitives defined in Chapter 5
— Increment and decrement operations can be greater than 1

~ Thus, a single semaphore operation may involve
Incrementing/decrementing a semaphore and waking up/suspending
Processes.

~ Provide considerable flexibility in process synchronization

P e Computer System Laboratory

» Signals

— A software mechanism that informs a process of the occurrence of
asynchronous events (similar to a hardware interrupt)
— Sending a signal

~ Kernel sends (delivers) a signal to a destination process by updating some state in
the context of the destination process.

~ Kernel sends a signal for one of the following reasons:

+ Kernel has detected a system event such as divide-by-zero (SIGFPE) or the
termination of a child process (SIGCHLD)

+ Another process has invoked the kill system call to explicitly request the
kernel to send a signal to the destination process.

— Receiving a signal
~ A destination process receives a signal when it is forced by the kernel to react in
some way to the delivery of the signal.
~ Two possible ways to react:
+ Default action (ignore, terminate the process, terminate & dump)
¢ Catch the signal by executing a user-level function called a signal handler.

~ AKin to a hardware exception handler being called in response to an asynchronous
interrupt.

P e Computer System Laboratory

UNIX Signals

RS

Source: Pearson

Value Name Description

01 SIGHUP Hang up; sent to process when kernel assumes that the
user of that process is doing no useful work

02 SIGINT Interrupt

03 SIGQUIT Quit; sent by user to induce halting of process and
production of core dump

04 SIGILL Illegal instruction

05 SIGTRAP Trace trap; triggers the execution of code for process
tracing

06 SIGIOT IOT instruction

07 SIGEMT EMT instruction

08 SIGFPE Floating-point exception

09 SIGKILL Kill; terminate process

10 SIGBUS Bus error

11 SIGSEGV Segmentation violation; process attempts to access
location outside its virtual address space

12 SIGSYS Bad argument to system call

13 SIGPIPE Write on a pipe that has no readers attached to it

14 SIGALRM Alarm clock; issued when a process wishes to receive a
signal after a period of time

15 SIGTERM Software termination

16 SIGUSR1 User-defined signal |

17 SIGUSR2 User-defined signal 2

18 SIGCHLD Death of a child

19 SIGPWR Power failure

Computer System Laboratory

Homework 5

O Exercise 6.5
O Exercise 6.6
O Exercise 6.13

P e Computer System Laboratory

	Operating System��Chapter 6. Concurrency: �Deadlock and Starvation
	Deadlock
	Potential Deadlock
	Actual Deadlock
	Reusable Resource Example
	Consumable Resource Example
	Deadlock Detection, Prevention, Avoidance
	Resource Allocation Graphs
	Conditions for Deadlock
	슬라이드 번호 10
	Three Approaches for Deadlocks
	Deadlock Prevention
	Deadlock Avoidance
	Process Initiation Denial
	Process Initiation Denial
	Resource Allocation Denial
	Determination of a Safe State
	P2 Runs to Completion
	P1 Runs to Completion
	P3 Runs to Completion
	Determination of an Unsafe State
	Deadlock Avoidance Logic
	슬라이드 번호 23
	Deadlock Detection
	Deadlock Detection Algorithm
	Deadlock Detection Algorithm
	Deadlock Recovery
	Dining Philosophers Problem
	슬라이드 번호 29
	UNIX Concurrency Mechanisms
	UNIX Concurrency Mechanisms
	UNIX Concurrency Mechanisms
	UNIX Signals
	Homework 5

