
Operating System

Chapter 6. Concurrency:
Deadlock and Starvation

Lynn Choi
School of Electrical Engineering

Deadlock
 Definition

 A set of processes is deadlocked when each process in the set is blocked
awaiting an event (or a resource) that can only be triggered (released) by
another blocked process in the set

 Examples
 4 cars arrive at a four-way stop

 Two general categories of resources
 Reusable resource

− Can be safely used by only one process at a time and is not depleted by that use
− Examples: processors, memory, I/O devices, files, databases and semaphores

 Consumable resource
− Can be created (produced) and destroyed (consumed)
− Examples: interrupts, signals, messages, data in I/O buffers

Potential Deadlock

I need quad
A and B

I need quad
B and C

I need quad
C and B

I need quad
D and A

 Source: Pearson

Actual Deadlock

HALT until
B is free

HALT until
C is free

HALT until
D is free

HALT until
A is free

 Source: Pearson

Reusable Resource Example

p0p1q0q1p2q2 leads to a deadlock!

 Source: Pearson

 Consider a pair of processes, in which each process
attempts to receive a message from the other process
and then send a message to the other process

 Deadlock occurs if the Receive is blocking

Consumable Resource Example

Deadlock Detection, Prevention, Avoidance

 Source: Pearson

Resource Allocation Graphs

 Source: Pearson

Conditions for Deadlock
 Mutual exclusion

 Only one process may use a resource at a time

 Hold and wait
 A process may hold allocated resources while waiting for the other resources

 No preemption
 No resource can be forcibly removed from a process holding it

 Circular wait
 A closed chain of processes exists such that each process holds at least one

resource needed by the next process in the chain

Circular Wait Example

 Source: Pearson

Three Approaches for Deadlocks
 Deadlock prevention

 Adopt a policy that eliminates one of the conditions 1 through 4

 Deadlock avoidance
 Make the appropriate choices dynamically based on the current state of

resource allocation

 Deadlock detection
 Allow the deadlock to occur, attempt to detect the presence of deadlock, and

recover if a deadlock is detected

Deadlock Prevention
 Mutual exclusion

 We cannot prevent this first condition
− If access to a resource requires mutual exclusion, then mutual exclusion must be

supported by the system

 Hold and wait
 Require that a process request all of its required resources at once and block

the process until all the requests can be granted simultaneously

 No preemption
 If a process holding certain resources is denied a further request, that process

must release its original resources and request them again
 Alternatively, if a process requests a resource that is currently held by another

process, OS may preempt the second process

 Circular wait
 Define a linear ordering of resource types
 If a process has been allocated resources of type R, than it may subsequently

request only those resources of types following R in the ordering

Deadlock Avoidance
 Deadlock avoidance

 A decision is made dynamically whether the current resource allocation
request will, if granted, potentially lead to a deadlock
− Requires knowledge of future resource requests

 Two approaches
 Process initiation denial

− Do not start a process if its demands may lead to a deadlock
 Resource allocation denial

− Do not grant a resource request to a process if this allocation might lead to a
deadlock

 Advantages
 It is not necessary to preempt and rollback processes, as in deadlock

detection
 It is less restrictive than deadlock prevention

Process Initiation Denial
− Consider a system of n processes and m different types of resources
− Let’s define the following vectors and matrices:

 Resource = R = (R1, R2, . . . , Rm)
 Available = V = (V1, V2, . . . , Vm)

 C11 C12 C1m

 Claim = C = C21 C22 C2m

 . . .
 Cn1 Cn2 Cnm

 A11 A12 A1m

 Allocation = A = A21 A22 A2m

 . . .
 An1 An2 Anm

Process Initiation Denial

Resource Allocation Denial
 Referred to as the banker’s algorithm

 State of the system reflects the current allocation of resources to processes
 Safe state is one in which there is at least one sequence of resource

allocations to processes that does not result in a deadlock
 Unsafe state is a state that is not safe

Determination of a Safe State
 System state consists of 4 processes and 3 resources

 Is this a safe state?

 Can any of 4 processes run to completion?
− P2 can run to completion!

 Source: Pearson

P2 Runs to Completion
 After P2 completes, P2 releases its resources

 Then, we can run any of P1, P3, or P4
 Assume we select P1

 Source: Pearson

P1 Runs to Completion

 Source: Pearson

P3 Runs to Completion

 Source: Pearson

Determination of an Unsafe State

 Is this a safe state?

 Source: Pearson

Deadlock Avoidance Logic

 Source: Pearson

Deadlock Avoidance Logic

 Source: Pearson

Deadlock Detection
 Deadlock prevention is very conservative

 Limit access to resources by imposing restrictions on processes

 Deadlock detection does the opposite
 Resource requests are granted whenever possible

 A check for deadlock can be made as frequently as
each resource request, or less frequently depending on
how likely it is for a deadlock to occur

Deadlock Detection Algorithm
 Instead of Claim (C), a Request (Q) matrix is defined

 Qij represents the amount of resources of type j requested by process i

 Initially, all processes are unmarked (deadlocked)
 The algorithm proceeds by marking processes that are

not deadlocked.
 Then, the following steps are performed

1. Mark each process that has a row in the Allocation matrix of all zeros
2. Initialize a temporary vector W to equal the Available vector
3. Find an index i such that process is currently unmarked and the ith row of Q

is less than or equal to W. If no such row is found, terminate the algorithm
4. If such a row is found, mark process i and add the corresponding row of the

allocation matrix to W. Return to step 3

 A deadlock exists if and only if there are unmarked
processes at the end of the algorithm

Deadlock Detection Algorithm

 Mark P4 because P4 has no allocated resources
 Set W = (0 0 0 0 1)
 The request of P3 is less than or equal to W, so mark P3 and set

− W = W + (0 0 0 1 0) = (0 0 0 1 1)
 No other unmarked process has a row in Q that is less than or equal to W.

Therefore, terminate the algorithm.

 Source: Pearson

Deadlock Recovery
 Recovery options in order of increasing sophistication

 Abort all deadlocked processes.
− The most common solution adopted by OS

 Backup each deadlocked process to a previous checkpoint and restart
− Require rollback and restart mechanism

 Successively abort deadlocked process until deadlock no longer exists
− The detection algorithm must be re-invoked

 Successively preempt resources until deadlock no longer exists
− A process that has a resource preempted must be rolled back to a prior point

before its acquisition of the resource

Dining Philosophers Problem
 No two philosophers can use the same fork at the same time

 Mutual exclusion

 No philosopher must starve to death
 Avoid starvation and deadlock

 Source: Pearson

Solution using Monitor

 Source: Pearson

UNIX Concurrency Mechanisms
 UNIX provides a variety of mechanisms for interprocess

communication and synchronization including:
 Pipes

− First-in-first-out queue, written by one process and read by another
− Implemented by a circular buffer, allowing two processes to communicate

on the producer-consumer model
− Example: ls | more, ps | sort, etc.

 Messages

− UNIX provides msgsnd and msgrcv system calls for processes to engage in
message passing

− A message is a block of bytes
− Each process is associated a message queue, which functions like a mailbox

UNIX Concurrency Mechanisms
 Shared memory

− Common block of virtual memory shared by multiple processes
− Fastest form of interprocess communication
− Mutual exclusion is provided for each location in shared-memory
− A process may have read-only or read-write permission for a memory location

 Semaphores

− Generalization of the semWait and semSignal primitives defined in Chapter 5
− Increment and decrement operations can be greater than 1

 Thus, a single semaphore operation may involve
incrementing/decrementing a semaphore and waking up/suspending
processes.

 Provide considerable flexibility in process synchronization

UNIX Concurrency Mechanisms
 Signals

− A software mechanism that informs a process of the occurrence of
asynchronous events (similar to a hardware interrupt)

− Sending a signal
 Kernel sends (delivers) a signal to a destination process by updating some state in

the context of the destination process.
 Kernel sends a signal for one of the following reasons:

 Kernel has detected a system event such as divide-by-zero (SIGFPE) or the
termination of a child process (SIGCHLD)

 Another process has invoked the kill system call to explicitly request the
kernel to send a signal to the destination process.

− Receiving a signal
 A destination process receives a signal when it is forced by the kernel to react in

some way to the delivery of the signal.
 Two possible ways to react:

 Default action (ignore, terminate the process, terminate & dump)
 Catch the signal by executing a user-level function called a signal handler.

 Akin to a hardware exception handler being called in response to an asynchronous
interrupt.

UNIX Signals

 Source: Pearson

Homework 5
 Exercise 6.5
 Exercise 6.6
 Exercise 6.13

	Operating System��Chapter 6. Concurrency: �Deadlock and Starvation
	Deadlock
	Potential Deadlock
	Actual Deadlock
	Reusable Resource Example
	Consumable Resource Example
	Deadlock Detection, Prevention, Avoidance
	Resource Allocation Graphs
	Conditions for Deadlock
	슬라이드 번호 10
	Three Approaches for Deadlocks
	Deadlock Prevention
	Deadlock Avoidance
	Process Initiation Denial
	Process Initiation Denial
	Resource Allocation Denial
	Determination of a Safe State
	P2 Runs to Completion
	P1 Runs to Completion
	P3 Runs to Completion
	Determination of an Unsafe State
	Deadlock Avoidance Logic
	슬라이드 번호 23
	Deadlock Detection
	Deadlock Detection Algorithm
	Deadlock Detection Algorithm
	Deadlock Recovery
	Dining Philosophers Problem
	슬라이드 번호 29
	UNIX Concurrency Mechanisms
	UNIX Concurrency Mechanisms
	UNIX Concurrency Mechanisms
	UNIX Signals
	Homework 5

