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Digital Modulation

Digital modulation

Converting the binary bit (or bits) to electrical signal for transmission is called “digital 
modulation”.

Carrier modulation 

If we upconvert           so that its power resided in high frequency area, it is called carrier 
modulation.  

Carrier modulation can be possible by multiplying                   (or                 ) with high 
value of      to         .    

Information 
source

010110 · · ·
Convert 

binary bit to 
electrical 
signal for 

transmission

sm(t)

sm(t)

cos(2⇡fct) sin(2⇡fct)

fc sm(t)
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Binary vs. M-ary Modulation

Binary modulation

If one bit is mapped to a signal, it is called “binary modulation”.

In this case, there are two possible signals,                         .

M-ary modulation

If       bits are mapped to a signal, it is called “M-ary modulation”.

In this case, there are       possible signals,                                    .

s1(t) and s2(t)

M

2M s1(t), s2(t). . . ., s2M (t)
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Binary Pulse Amplitude Modulation (PAM)

Signal waveform

Bit rate 

Tb

Tb
0

0

t
A

t
�A

s1(t) s2(t)

sm(t) = AmgT (t), 0  t  Tb, m = 1, 2

Tb : bit interval

Rb =
1

Tb
bits/sec

Am = A, (if m = 1)

Am = �A, (if m = 2)
0

t

Tb

1

gT (t)
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Signal energy

The two signal waveforms have equal energy, i.e.,                                               .

Define the signal energy per bit as

Em =

Z Tb

0
s2m(t) dt, m = 1, 2

= A2

Z Tb

0
g2T (t) dt

= A2Tb

Em = A2Tb, for m = 1, 2

Eb

Eb = A2Tb =) A =

r
Eb
Tb
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Geometric representation

Signal constellation (or space diagram) based on geometric representation

sm(t) = sm (t), m = 1, 2

Tb0
t

 (t)

1/
p

Tbs1 =
p

Eb, s2 = �
p

Eb

where 

0�
p

Eb

p
Eb

s1s2
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Example of binary antipodal signal

Any antipodal signal waveforms can be represented geometrically as two vectors (two signal 
points) on the real line, where one vector is the negative of the other.

0
t

Tb

p
Eb/Tb

�
p

Eb/Tb �
p

Eb/Tb

p
Eb/Tb

Tb/2
Tb/2

Tb
t0

s1(t) s2(t)

sm(t) = sm (t), m = 1, 2

s1 =
p

Eb, s2 = �
p

Eb

0
t

TbTb/2

 (t)

p
1/Tb

�
p

1/Tb
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Signal waveform

PPM signals are orthogonal, i,e., 

Energy

Binary Pulse Position Modulation (PPM)

0
t

Tb 0
t

Tb

s1(t) s2(t)

Tb/2 Tb/2

p
2Eb/Tb

Z Tb

0
s1(t)s2(t) dt = 0

Eb =
Z Tb

0
s21(t) dt =

Z Tb

0
s22(t) dt

p
2Eb/Tb
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Geometric representation

In this case, the two signal waveforms are represented as two-dimensional vectors 

s1(t) = s11 1(t) + s12 2(t)

s2(t) = s21 1(t) + s22 2(t)

s11 =

Z Tb

0
s1(t) 1(t) dt =

p
Eb

s12 =

Z Tb

0
s1(t) 2(t) dt = 0

s21 =

Z Tb

0
s2(t) 1(t) dt = 0

s22 =

Z Tb

0
s2(t) 2(t) dt =

p
Eb

s1 = (s11, 0) = (
p

Eb, 0)

s2 = (0, s22) = (0,
p

Eb)

0

p
Eb p

Eb

s1

s2

0
t

Tb 0
t

TbTb/2 Tb/2

 1(t)  2(t)

p
2/Tb

p
2/Tb
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Example of two orthogonal signals

Geometric representation 

Vector representation

0

s1(t) s2(t)

Tb

Tb Tb/20

p
Eb/Tb

p
Eb/Tb

tt

s1(t) = s11 1(t) + s12 2(t)

s2(t) = s12 1(t) + s22 2(t)

s11 =

Z Tb

0
s1(t) 1(t) dt =

p
Eb/2

s12 =

Z Tb

0
s1(t) 2(t) dt =

p
Eb/2

s21 =

Z Tb

0
s2(t) 1(t) dt =

p
Eb/2

s22 =

Z Tb

0
s2(t) 2(t) dt = �

p
Eb/20

t
Tb 0

t
TbTb/2 Tb/2

 1(t)  2(t)

p
2/Tb

p
2/Tb

s1 = (
p
Eb/2,

p
Eb/2)

s2 = (
p
Eb/2,�

p
Eb/2)

t

p
Eb

p
Eb
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Suppose that we have a set of finite energy signal waveforms                                      and we 
wish to construct a set of orthonormal waveforms                    .

The Gram-Schmidt procedure allows us to construct such a set!

Gram-Schmidt procedure

Step 1: Begin with the first waveform         , which is assumed to have energy     . The first 
orthonormal waveform is simply constructed as

Gram-Schmidt Procedure

{si(t), i = 1, 2, . . . ,M}

s1(t) E1

 1(t) =
s1(t)

E1

{ n(t)}Nn=1
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 Step 2: The second waveform is constructed from          by first computing the 
projection of           onto         , which is  

✦ Then               is subtracted from         to yield

✦ Now,          is orthogonal to          , but it does not possess unit energy. 

✦ If       denotes the energy in         , then the energy-normalized waveform that is 
orthogonal to           is   

s2(t)

 1(t) s2(t)

c12 =

Z 1

�1
s2(t) 1(t) dt

c12 1(t) s2(t)

d2(t) = s2(t)� c21 1(t)

d2(t)  1(t)

E2 d2(t)
 1(t)

 2(t) =
d2(t)p
E2

; E2 =

Z 1

�1
d22(t) dt
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In general, the orthogonalization of the k-th function leads to

where 

 k(t) =
dk(t)p
Ek

dk(t) = sk(t)�
k�1X

i=1

cki i(t)

cki =

Z 1

�1
sk(t) i(t) dt

Ek =

Z 1

�1
d2k(t) dt

1412년 9월 19일 수요일



Prof. Young-Chai Ko Communication System II Korea University

Find the orthonormal functions for the set of four waveforms 

Example

{sk(t)}4k=1

t

s1(t)

1

20

t20

1

-1

s2(t)

t

1

20 3
-1

t0 3

-1

s3(t)

s4(t)

1
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Gram-Schmidt procedure

The waveform           has energy            , so that  

We observe that              . Hence,          are orthogonal to          . Therefore,    

To obtain         , we compute        and       , which are                   and               . Thus, 

✦ Since           has unit energy, it follows that                      .

s1(t) E1 = 2

 1(t) =

r
1

2
s1(t)

c12 = 0 s2(t)  1(t)

�2(t) =
s2(t)p
E2

�3(t) c13 c23 c13 =
p
2 c23 = 0

d3(t) = s3(t)�
p
2 1(t) =

⇢
�1, (2  t  3)

0, (otherwise).

d3(t)  3(t) = d3(t)
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In determining          , we find that                    ,              , and             .   Hence,

✦ Consequently,           is a linear combination of            and           , hence,                 .

 4(t) c14 = �
p
2 c24 = 0 c34 = 1

d4(t) = s4(t) +
p
2�1(t)�  (t) = 0

s4(t)  1(t)  3(t)  4(t) = 0

t

 1(t)

r
1

2

20

t0

r
1

2

�
r

1

2

 2(t)

t0

 3(t)

�1
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Once we have constructed the set of orthogonal waveforms                  , we can express the 

signals                     as exact combinations of the                   .

Hence, we may write   

Signal energy

Geometrical Representation of Signals

{ n(t)}Nn=1

{sm(t)}Mm=1 { n(t)}Nn=1

sm(t) =
NX

n=1

smn n(t), m = 1, 2, . . . ,M.

smn =

Z 1

�1
sm(t) n(t) dt.where

Em =

Z 1

�1
s2m(t) dt =

NX

n=1

s2mn.

Dimension
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Vector representation 

For                                    , the vector representation of            is defined as

Inner product of two signals 

sm · sn =

Z 1

�1
sm(t)sn(t) dt

sm = [sm1 sm2 · · · smN ]

sm(t) =
NX

n=1

smn�n(t) sm(t)

=
NX

k=1

smksnk
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Received signal in a signal interval of duration      over AWGN channel

       denotes the sample function of the additive white Gaussian noise (AWGN) process 

with the power spectral density                                   . 

Block diagram of AWGN channel

Additive White Gaussian Noise Channel

r(t) = sm(t) + n(t), m = 1, 2,

n(t)

Sn(f) = N0/2W/Hz

Tb

+sm(t) r(t) = sm(t) + n(t)
Transmitted signal Received signal

n(t)
Noise
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Optimum Receiver over AWGN

Based on the observation of         over the signal interval, we wish to design a receiver that is 
optimum in the sense that it minimizes the probability of making an error.

Receiver structure

Two types of signal demodulator

Correlation-type demodulator

Matched filter-type demodulator

r(t)

Signal
demodulator

Detector
Decision on 

transmitted signal
Received

signal

r(t)

Receiver
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Correlation-Type Demodulator for Binary Antipodal Signals

Signal waveform

where          is the unit energy rectangular pulse and                                       .

Received signal  

Correlation-type demodulator

sm(t) = sm (t), m = 1, 2

 (t) s1 =
p
Eb, s2 = �

p
Eb

r(t) = sm (t) + n(t), 0  t  Tb, m = 1, 2.

X
Received

signal

r(t)

 (t)
Sample at 
t = Tb

y

r(t) is cross-correlated with  (t).

Detector
ŝm

Z t

0
( ) dt
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Output of cross-correlation operation

Sampling the output of the correlator at  

where 

t = Tb

y(Tb) = sm + n

y(t) =

Z t

0
r(⌧) (⌧) d⌧

=

Z t

0
[sm (⌧) + n(⌧)] (⌧) d⌧

= sm

Z t

0
 2(⌧) d⌧ +

Z t

0
n(t) (⌧) d⌧.

n =

Z Tb

0
 (⌧)n(⌧) d⌧

desired signal term noise term
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Noise term

    is Gaussian random variable.

Mean 

Variance 

n =

Z Tb

0
 (⌧)n(⌧) d⌧

n

E[n] = E

"Z Tb

0
 (⌧)n(⌧) d⌧

#
=

Z Tb

0
 (⌧)E[n(⌧)] d⌧ = 0

�2
n = E[n2] =

Z Tb

0

Z Tb

0
E[n(t)n(⌧)] (t) (⌧) dtd⌧

=

Z Tb

0

Z Tb

0

N0

2
�(t� ⌧) (t) (⌧) dtd⌧

=
N0

2

Z Tb

0
 2(t) dt =

N0

2
.
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Conditional PDF given sm

f(y|sm) =
1p
⇡N0

e�(y�sm)2/N0 , m = 1, 2.

0

f(y|s1)
f(y|s2)

p
Eb�

p
Eb

y
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Noise-free output of the correlator for the rectangular pulse 

Note that the maximum signal at the output of the correlator occurs at            . 

We also observe that the correlator must be reset to zero at the end of each bit interval    , 
so that it can be used in the demodulator of the received signal in the next signal interval. 
Such an integrator is called an integrate-and-dump filer. 

 (t)

p
Eb

�
p

Eb

00

y(t|s1) y(t|s2)

tt
Tb

�Tb

With               , the signal waveform at the output of the correlator is  n(t) = 0

y(t) =

Z t

0
sm 

2(⌧) d⌧ = sm

Z t

0
 2(t) d⌧

t = Tb

Tb
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Signal waveform 

Note that in vector form, the transmit signals are 

Correlation-type demodulator

Correlation-Type Demodulator for Binary Orthogonal Signals

r(t) = sm(t) + n(t), 0  t  Tb, m = 1, 2.

where s1(t) =
p

Eb 1(t), and s2(t) =
p
Eb 2(t)

s1 = [
p

Eb, 0], and s2 = [0,
p
Eb]

X

X

 1(t)

 2(t)

Z t

0
( ) dt

Z t

0
( ) dt

y1

y2

Received
signal

r(t)
Detector

ŝmsample at t = Tb
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