Communication Signals

(Haykin Sec. 2.1 and Ziemer Sec.2.4-Sec. 2.5)
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Review

®m  Singular functions
Unit step function
Dirac delta function (Unit impulse function)
Signum (Sign) function

®m  Generalized Fourier series

Integral-square error
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Summary of Today’s Lecture

®  Fourier series
Generalized Fourier series
Complex Fourier series
Examples
®  Fourier transform
Modulation
Demodulation
- Linear time-invariant system - Amplitude modulation
- Singular functions - Impulse (system) response - Phase modulation
—~Fourier series - Convolution - Frequency modulation
< - Fourier transform - Revisit to Fourier transform - Delta/Pulse code modulation
\
) 4 ~ 5 weeks . ) Il ~ 12 weeks .
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Generalized Fourier Series

®m Generalized Fourier series:

representation of signals as a series of orthogonal functions

m Recall the vector space:

Given any vector A in three-dimensional space can be expressed in terms of three
vectors x, y, and z that do not all lie in the sample plane

A = A1X—|—A2y—|—A3Z

— where Ai, As, and A3 are appropriately chosen constants.

- Thevectors x, y, and z are said to be linearly independent since no one of
them can be expressed as a linear combination of the other two. For example, it

is impossible to write x = ay + 5z, no matter what choice is made for the
constants « and f3

Such a set of linearly independent vectors is said to form a basis set for a three-
dimensional vector space. Such vectors span a three-dimensional vector space in
the sense that any vector A can be expressed as a linear combination of them.
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®m Similarly, consider the problem of representing a time function, or signal, z(¢) on a

T-second interval (ty,to + 7'), as a similar expansion.

We consider a set of time functions ¢1(t), ¢2(t), -+, ¢~ (%), which are specified
independently of x(t), and seek a series expansion of the form

N
va(t) =Y (Xpfon(t), to<t<to+T
n=1

independent of time

the Vv coefficients X,, are independent of time and the subscript a indicates that
T, (t) is considered an approximation.

We assume that the ¢,,(¢)’s are linearly independent; that is, no one of them can
be expressed as a weighted sum of the other N — 1. A set of linearly
independent ¢, (t)’s will be called a basis function set.
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®m  We now wish to examine the error in the approx1mat10n of z(t) by z,(t). Asin the

case of ordinary vectors, the expansion ., ZX o) 1S easiest to use if the ¢, (t)’s are
orthogonal on the interval (¢g,t9 + 1).

That is,

to+1T o
/ O () D% () dt = 1y 0pm = { g”’ Z ; Z (all m and n)

to

where, if ¢,, = 1 for all n,the ¢, (¢)’s are said to be normalized.
- A normalized orthogonal wet of functions is called on orthogonal basis set.

» 4, . 1s called the Kronecker delta function, is defined as unity ift m = n,
and zero otherwise.

®m The error in the approximation will be measured in the integral-square sense (I1SE)

where/( ) dt denotes the integration
over ¢ from to to to+ 1.

Error = ey = / (1) — z4(1)]? dt
T
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®m The ISE is an applicable measure of error only when x(t) is an energy signal or a
power signal. If x(?) is an energy signal of infinite duration, the limit as 7' — oois
taken.

®m  We now find the set of coefficients X,, that minimizes the ISE. Substituting x, ()
into ISE, expressing the magnitude square of the integrand as the integrand times
its complex conjugate and expanding, we obtain

N Lx(t)th—i lxg/Tx(t)gb;;(t) dt—l—Xn/T:z;*(t)gbn(t) dt]

N
+ Y nl X
n=1

To find the X,,’s that minimizes €y we add and subtract the quantity

N 2

1
— *(+) d
P RICLOL
which yields
N 1 N 1 2
eEN = \x(t)\2dt—;a /Tx(t)gb;';(t) dt ;Cn Xn—a/Ta:(t)(bj;(t) dt

independent of X,,’s

124 38 142 22



The first two terms on the right-hand side of enx are independent of the
coefficients X,,. Since the last sum on the right-hand side is nonnegative, we will
minimize ey if we choose each X, such that the corresponding term in the sum
is zero. Thus, since ¢,, > 0, the choice of

X, =+ /T w(t)6% (1) dt

Cn

for X,, minimizes the ISE.

The resulting minimum-error coefficients will be referred to as the Fourier
coefficients.

Minimum value for €.

1

()P dt— ) —

(G D
N

_ /T\a;<t)\2dt—zcn\xny?

n=1

2

(en)min

/T e(0)6% (1) dt
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If we can find an infinite set of orthonormal functions such that ]\}im (€N )min =0 for
any signal that is integrable square, e

Lu@ﬁﬁ<m

we say that the ¢, (¢)’s are complete. In the sense that the ISE is zero, we may then
write

2(t) = Xnon(t) (ISE=0)

Assuming a complete orthogonal set of functions, we obtain the relation

N
/ (P dt =3 eq| X,
T n=1

This equation is known as Parseval’s theorem.

In general, equation]\}i_r:fl (€N )min = O requires that z(¢) be equal to x,(t) as N — oo.
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m  Example, The signal xz(t)is to be approximated by a two-term generalized Fourier

series
[ sin(mt), 0<t <2
z(t) = { 0, otherwise
Cb%(t) ¢%(t)
| o
0 |' ; 0 | 2

The Fourier coefficients are calculated as

X, — /O " 6 (8)sin(t) d — /O in(mt) di —
X, = /O " a(t) sin(nt) dt = /1281n(m)dt:_3

Thus the generalized two-term Fourier series approximation for this signal is

To(t) = %¢1(t) — %qbz(t) = % [fect (t - %) —rect (t - g)]
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® Space interpretation

Bl z(t) - - ¢2(t)ﬁ
2/ ‘ x,(t) | |
0.5 N T TSP P S PPF F PP TPRP - )
" —
t P )» -
CUBF - 9
0 05 1I 5 2 25 3 T Lq (t)

®m Minimum ISE

2 2\ ? 3
(GN)min = /O Sin2(7'('t) dt — 2 <—) = 1— — ~ (0.189
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Complex Exponential Fourier Series

®m Consider a signal z(t) defined over the interval (to,%o + T") with the definition

2T

WOZQWfO:TO

we define the complex exponential Fourier series as

p(t) = ) X" g <t <t+0+7T,

nN=—oo

where

1 to+T1o . ,
X, = —/ x(t)e It dit
7 ). (t)

It can be shown to represent the signal x(¢) exactly in the interval (t0, %0 + 7o), except at a
point of jump discontinuity where it converges to the arithmetic mean of the left-hand
and right-hand limits.

Outside the interval (to,to + 7o), nothing is guaranteed.
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However, we note that the right-hand side of the complex exponential Fourier
series is period with period T, since it is the sum of periodic rotating phasors
with harmonic frequencies.

If x(t)is periodic with period 7p, the Fourier series is an accurate representation forz(t)
for all ¢ (except at points of discontinuity).

A useful observation about a complete orthonormal-series expansion of a signal
is that the series is unique.

- For example, if we somehow find a Fourier expansion for a signal z(t), we
know that no other Fourier expansion for that z(¢) exists, since {e/™°"}
forms a complete set.
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m  Example

Consider the signal x(t) = cos(wot) + sin®(2wot) where wy = 27/Tp . Find the
complex exponential Fourier series.

Solution: Using trigonometric identities and Euler’s theorem, we obtain

1 1
xr(t) = cos(wot)+ 575 cos(4wqt)
1 . 1 _ . 1 1 . |
—  _ pJwot = _—jwot - T _jwot T _—jwot
26 + 26 + 5 46 46
- Hence, 1
XO — 5
1
1
X4 p— Z p— X_4
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Symmetry Properties of Fourier Coefficients

Assuming x(t) is real. Then we can show

X*=X_,
Writing X,, = |X,|e’“*", we have

X, = |X_,| and /X, = —/X_,

Using Euler’s theorem, Fourier coefficient can be rewritten

1 to+To . ,
X, = — x(t)e "0 dt
7o /. (t)
1 to+To ] to+T0o
= x(t) cos(nwot) dt — = x(t) sin(nwot) dt

TO tO T tO
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Trigonometric Form of the Fourier Series

m Recall the Fourier series

> . 1 -
o(t) = ) Xad™f X, =7 | altye et as
0

®m  Assuming z(t) real, we can regroup the complex exponential Fourier series by paris of

terms of the form

Xnejnwot 4+ X_ne—jnwot _ ‘Xn|ej(nw0t—|—éXn) 4+ ’X_n|€—](nomegaot—l—éXn)

= 2|X,,|cos(nwot + £X,,)

Hence, we can rewrite the Fourier series as

2(t) = Xo+ Y 2|Xp| cos(nwot + £X,,)

n=1
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m Using the trigonometric identity given as

cos(x + y) = cos(x) cos(y) — sin(x) sin(y)

we can rewrite Fouriler series as

z(t) = Xo + Z A, cos(nwot) + Z B, sin(nwqt)

n=1 n=1
where 5
A, = 2|Xn|cosLXn:—/ x(t) cos(nwot) dt
1o J,

2
B, = —2\Xn\sinLXn:—/ x(t) sin(nwot) dt
TO TO
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Example: Periodic Pulse Train

® Find the complex Fourier coefficients X,

X(t)

A

To T2 0 T2 To

:E(t) _ A, _% S t S g
| 0, for the remainder of the period

fundamental frequency: f, = L

1o
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Complex Fourier coefficients X,

Xn

sinc(x) =

T/2
/ Aexp(—j2mn fot)dt

_T/2
A t=T/2
, exp(—72mn fot
—j27mn fo ( ot) t=—T/2
A exp(—jmnfoT) — exp(jmnfoT))
—j27mn fo
A [exp(jmnfoT) — exp(—jmnfoT)]
7Tnf0 ]2
A .
sin (7mn fol') = AT'sinc(nfoT)
T fo

where we define sinc function as

sin(7x)

X
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m Definition

sinc(x)

Sinc Function

sinc(x)
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Amplitude and Phase

x(t)

A

Spectrum

To T2 0 T2 To

Amplitude spectrum
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Fourier Transform

®m  Now we want to generalize the Fourier series to represent aperiodic signals using the
Fourier series form given as

p(t)= ) Xpe™' tg <t <t+0+Tp

nN=——oo

1 to+710o '
X, = —/ z(t)e It dt
TO tO
®m  Consider nonperiodic signal z(¢) but is an energy signal.
. 1
In the interval [t| < 5 1o, we can represent z(t¢) as
oo 1 T0/2 . . TO
x(t) = —/ :B()\)e_ﬂ”"fo)‘ d\ | edm2mnfot it < —
n;oo To J-1, /2 2

- Wwhere fo=1/T.

To represent x(t) for all time, we simply let 7, — co such that

nfO:n/TO%fv 1/TO—>df7 Z —>/OO

n=——oo
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Thus

we can rewrite

o) = [ X(petay

12

e

fli

ne

+4>

FO
ne

23



