
Operating System 
 
Chapter 2. OS Overview 

Lynn Choi 
School of Electrical Engineering 



Class Information 
 Lecturer 

 Prof. Lynn Choi, School of Electrical Eng. 
 Phone: 3290-3249, Kong-Hak-Kwan 411, lchoi@korea.ac.kr,  
 TA: Changhyun Yun, 3290-3896, yunch@korea.ac.kr 

 Time 
 Tue/Thu 3:30pm – 4:45pm 
 Office Hour: Tue 5:00pm – 5:30pm 

 Place 
 Kong-Hak-Kwan 466 

 Textbook 
 “Operating Systems: Internals and Design Principles”, William Stallings, 

Pearson, 7th Edition, 2012. 

 References 
 “Computer Systems: A Programmer’s Perspective”, Randal E. Bryant and 

David O’Hallaron, Prentice Hall, 2nd Edition, 2011. 

 Class homepage 
 http://it.korea.ac.kr : slides, announcements 

 

mailto:lchoi@korea.ac.kr�
mailto:yunch@korea.ac.kr�
http://it.korea.ac.kr/�


Class Information 
 Course overview 

 1. OS Overview 
 2. Process 
 3. Thread 
 4. Mutual Exclusion and Synchronization 
 5. Deadlock and Starvation 
 6. Memory Management 
 7. Virtual Memory 
 8. Uniprocessor Scheduling 
 9. Multiprocessor and Realtime Scheduling 
 10. IO 
 11. File Management 
 12. Embedded OS 
 13. Distributed OS 



Class Information 
 Evaluation 

 Midterm : 35% 
 Final: 35% 
 Homework and Projects: 30% 
 Class participation: extra 5% 

− Attendance: no shows of more than 2 will get -5% 
− Bonus points 



Operating System 
 An OS is a program that controls the execution of 

application programs and acts as an interface 
between applications and the computer hardware 
 

 Source: Pearson 



Key Interfaces 
 Instruction set architecture (ISA) 

 Define the interface between SW and HW 

 Application binary interface (ABI) 
 Define the system call interface to OS 

 Application programming interface (API) 
 Define the program call interface to system services. System calls are 

performed through libraries. 
 

 



OS  

 Operating system 
 A layer of software between the application program and the hardware 
 Two purposes 

− Provide applications with simple and uniform interface to 
manipulate complicated and often widely different low-level 
hardware devices 

− Protect the hardware from misuse by runaway applications 
 Use abstractions such as processes, virtual memory, and files to 

achieve both goals 



OS 

Application programs 

Processor  Main memory I/O devices 

Operating system 
Software 

Hardware 

Processor  Main memory I/O devices 

Processes 

Files 

Virtual memory 

Layered view of a computer system 

Abstractions provided by an OS 



Terminology 
 Microprocessor: a single chip processor 

− Intel i7, Pentium IV, AMD Athlon, SUN Ultrasparc, ARM, MIPS, .. 

 ISA (Instruction Set Architecture) 
 Defines machine instructions and visible machine states such as registers 

and memory 
 Examples 

− x86(IA32): 386 ~ Pentium III, Pentium IV 
− IA64: Itanium, Itanium2 
− Others: PowerPC, SPARC, MIPS, ARM 

 Microarchitecture 
 Implementation: implement hardware according to the ISA 

− Pipelining, caches, branch prediction, buffers 
− 80386, 80486, Pentium, Pentium Pro, Pentium 4 are the 1st, 2nd, 3rd, 4th, 5th 

implementation of x86 ISA 
 Invisible to programmers 

− Programmer programs Pentium 4 as same as 486 processor 

 



Terminology 
 CISC (Complex Instruction Set Computer) 

 Each instruction is complex 
− Instructions of different sizes, many instruction formats, allow computations on 

memory data, … 
 A large number of instructions in ISA 
 Architectures until mid 80’s 

− Examples: x86, VAX 

 RISC (Reduced Instruction Set Computer) 
 Each instruction is simple 

− Fixed size instructions, only a few instruction formats 
 A small number of instructions in ISA 
 Load-store architectures 

− Computations are allowed only on registers 
 Data must be transferred to registers before computation 

 Most architectures built since 80’s 
− Examples: MIPS, ARM, PowerPC, Alpha, SPARC, IA64, PA-RISC, etc. 



Terminology 
 Word 

 Default data size for computation 
− Size of a GPR & ALU data path depends on the word size 

 GPR stands for general purpose (integer) registers 
 ALU stands for arithmetic and logic unit 

 The word size determines if a processor is a 8b, 16b, 32b, or 64b processor 

 Address (or pointer) 
 Points to a location in memory 
 Each address points to a byte (byte addressable) 
 If you have a 32b address, you can address 232 bytes = 4GB 
 If you have a 256MB memory, you need at least 28 bit address since 228 = 

256MB 

 Caches 
 Faster but smaller memory close to processor 

− Fast since they are built using SRAMs, but more expensive 
 

 



Terminology 
 Interrupt 

 A mechanism by which I/O devices may interrupt the normal sequencing of 
the processor 

 Provided primarily as a way to improve processor utilization since most I/O 
devices are much slower than the processor 

 More formally, interrupt can be defined as below: 
− Forced transfer of control to a procedure (handler) due to external 

events (interrupts) or due to an erroneous condition (exceptions) 
− External interrupt is caused by external events (IO devices) and 

asynchronous 
− Exceptions are caused by processor internally at erroneous condition 

 



Evolution of Operating Systems 

Serial 
Processing 

Simple 
Batch 
Systems 

Multiprogrammed 
Batch Systems 

Time 
Sharing 
Systems 



Serial Processing 

 Earliest computers 
 No operating system until mid 1950s 

− programmers interacted directly with the computer hardware 
 Computers ran from a console with display lights, toggle switches, 

some form of input device, and a printer 

 Problems 
 Scheduling 

− Most installations used a hardcopy sign-up sheet to reserve 
computer time. However, time allocations could run short or 
long, resulting in wasted time 

 Setup time 
− A considerable amount of time was spent just on setting up the 

program to run. Compile/link/load require mounting tapes, 
setting up card decks, etc. 

 Early computers were very expensive 
− Important to maximize processor utilization 

 
 

 



ENIAC 

 Source:  Wikipedia 



The Von Neumann Machine & IAS 

 Source:  IAS 



Simple Batch Systems 
 Monitor 

 Job is submitted to computer operator who 
batches them together and places them on 
an input device 
− This simple batch system is called a 

monitor 
 User no longer has direct access to 

processor 
 Program branches back to the monitor 

when finished 

 Monitor point of view 
 Monitor controls the sequence of events 
 Resident monitor is a software always in 

memory 
 Monitor reads in jobs and gives control 
 Job returns control to monitor 

 
 

 Source: Pearson 



Batch Systems: Problems 

 Processor is often idle  
 Even with automatic job sequencing 
 I/O devices are slow compared to processor 

 



Multiprogrammed Batch System 

 When one job needs to wait for I/O, the processor 
can switch to the other job, which is likely not 
waiting for I/O 
 Also known as multitasking 
 Memory can be expanded to hold three, four, or more programs 

 Source: Pearson 



Multiprogramming Example 

 Source: Pearson 



Effects on Resource Utilization 

Table 2.2   Effects of Multiprogramming on Resource Utilization  

 Source: Pearson 



Time-Sharing Systems 

 Can be used to handle multiple interactive jobs 
 In a time-sharing system, minimizing response time is more important than 

maximizing throughput (processor utilization) 
 Multiple users simultaneously access the system through terminals, with 

the OS interleaving the execution of each user program in time slice  



Compatible Time-Sharing Systems 

 CTSS: One of the first time-sharing OS 
 Developed at MIT by a group known as Project MAC 
 Ran on a computer with 32,000 36-bit words of main memory, with the 

resident monitor consuming 5000 words 
 To simplify both the monitor and memory management a program was 

always loaded to start at the location of the 5000th word 

 
 Time Slicing 

 System clock generates interrupts at a rate of approximately one every 
0.2 seconds 

 At each interrupt OS regained control and could assign processor to 
another user 

 Old user programs and data were written out to disk 
 Old user program code and data were restored in main memory when 

that program was next given a turn 



CTSS Operation 

 Source: Pearson 



OS Basics: Process 
 Process 

 An instance of a program in 
execution 

 A process contains 
three components: 
 An executable program 
 The associated data  
 The execution context (or 

“process state”)  
− Process registers 
− Include information 

such as the process 
priority 

− Internal data by which 
the OS is able to 
supervise and control 
the process 

 
 Source: Pearson 



Memory Management 

 Virtual Memory 
 A facility that allows programs to address memory from a logical point 

of view, without regard to the amount of main memory physically 
available 

 Conceived to meet the requirement of having multiple user jobs reside 
in main memory concurrently 
 

 Paging 
 Allows processes to be comprised of a number of fixed-size blocks, 

called pages 
 Program references a word by means of a virtual address 

− Consists of a page number and an offset within the page 
− Each page may be located anywhere in main memory 

 Provides for a dynamic mapping between the virtual address used in 
the program and a real (or physical) address in main memory 



Memory Hierarchy 
 Motivated by 

 Principles of Locality 
 Speed vs. Size vs. Cost tradeoff 

 Locality principle  
 Spatial Locality: nearby references are likely 

− Example: arrays, program codes 
− Access a block of contiguous words  

 Temporal Locality: references to the same location is likely to occur soon 
− Example: loops, reuse of variables 
− Keep recently accessed data to closer to the processor 

 Speed vs. Size tradeoff 
 Bigger memory is slower: SRAM - DRAM - Disk 
 Fast memory is more expensive 

 



Levels of Memory Hierarchy 

Registers 

Cache 

Main Memory 

Disk 

Cloud Computing 

Instruction  
Operands 

Cache Line 

Page 

File 

Capacity/Access Time Moved By Faster/Smaller 

Slower/Larger 

Programmer/Compiler 
1- 16B 

H/W 
32 - 512B 

OS (Virtual Memory) 
KB – MB 

User 
any size 
 

100Bs 

KBs-MBs 

100GBs 

Infinite 

GBs 



Virtual Memory 

 Source: Pearson 



Virtual Memory 

 Source: Pearson 



Modern OS 
 Architecture 

 Microkernel 
 Multithreading 
 Symmetric multiprocessing (SMP) 
 Distributed OS 
 Object-oriented design 

 Virtualization: virtual machine 
 OS for muticores 
 Examples 

Microsoft Windows 
 UNIX 
 Linux 

 



Homework 1 
 Read Chapter 1 
 Read Chapter 2 
 Exercise 2.1 
 Exercise 2.3 
 Exercise 2.5 
 Read Chapter 3 


	Operating System��Chapter 2. OS Overview
	Class Information
	Class Information
	Class Information
	Operating System
	Key Interfaces
	OS 
	OS
	Terminology
	Terminology
	Terminology
	Terminology
	Evolution of Operating Systems
	Serial Processing
	ENIAC
	The Von Neumann Machine & IAS
	Simple Batch Systems
	Batch Systems: Problems
	Multiprogrammed Batch System
	Multiprogramming Example
	Effects on Resource Utilization
	Time-Sharing Systems
	Compatible Time-Sharing Systems
	CTSS Operation
	OS Basics: Process
	Memory Management
	Memory Hierarchy
	Levels of Memory Hierarchy
	Virtual Memory
	Virtual Memory
	Modern OS
	Homework 1

