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Class Information 
 Lecturer 

 Prof. Lynn Choi, School of Electrical Eng. 
 Phone: 3290-3249, Kong-Hak-Kwan 411, lchoi@korea.ac.kr,  
 TA: Changhyun Yun, 3290-3896, yunch@korea.ac.kr 

 Time 
 Tue/Thu 3:30pm – 4:45pm 
 Office Hour: Tue 5:00pm – 5:30pm 

 Place 
 Kong-Hak-Kwan 466 

 Textbook 
 “Operating Systems: Internals and Design Principles”, William Stallings, 

Pearson, 7th Edition, 2012. 

 References 
 “Computer Systems: A Programmer’s Perspective”, Randal E. Bryant and 

David O’Hallaron, Prentice Hall, 2nd Edition, 2011. 

 Class homepage 
 http://it.korea.ac.kr : slides, announcements 
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Class Information 
 Course overview 

 1. OS Overview 
 2. Process 
 3. Thread 
 4. Mutual Exclusion and Synchronization 
 5. Deadlock and Starvation 
 6. Memory Management 
 7. Virtual Memory 
 8. Uniprocessor Scheduling 
 9. Multiprocessor and Realtime Scheduling 
 10. IO 
 11. File Management 
 12. Embedded OS 
 13. Distributed OS 



Class Information 
 Evaluation 

 Midterm : 35% 
 Final: 35% 
 Homework and Projects: 30% 
 Class participation: extra 5% 

− Attendance: no shows of more than 2 will get -5% 
− Bonus points 



Operating System 
 An OS is a program that controls the execution of 

application programs and acts as an interface 
between applications and the computer hardware 
 

 Source: Pearson 



Key Interfaces 
 Instruction set architecture (ISA) 

 Define the interface between SW and HW 

 Application binary interface (ABI) 
 Define the system call interface to OS 

 Application programming interface (API) 
 Define the program call interface to system services. System calls are 

performed through libraries. 
 

 



OS  

 Operating system 
 A layer of software between the application program and the hardware 
 Two purposes 

− Provide applications with simple and uniform interface to 
manipulate complicated and often widely different low-level 
hardware devices 

− Protect the hardware from misuse by runaway applications 
 Use abstractions such as processes, virtual memory, and files to 

achieve both goals 



OS 

Application programs 

Processor  Main memory I/O devices 

Operating system 
Software 

Hardware 

Processor  Main memory I/O devices 

Processes 

Files 

Virtual memory 

Layered view of a computer system 

Abstractions provided by an OS 



Terminology 
 Microprocessor: a single chip processor 

− Intel i7, Pentium IV, AMD Athlon, SUN Ultrasparc, ARM, MIPS, .. 

 ISA (Instruction Set Architecture) 
 Defines machine instructions and visible machine states such as registers 

and memory 
 Examples 

− x86(IA32): 386 ~ Pentium III, Pentium IV 
− IA64: Itanium, Itanium2 
− Others: PowerPC, SPARC, MIPS, ARM 

 Microarchitecture 
 Implementation: implement hardware according to the ISA 

− Pipelining, caches, branch prediction, buffers 
− 80386, 80486, Pentium, Pentium Pro, Pentium 4 are the 1st, 2nd, 3rd, 4th, 5th 

implementation of x86 ISA 
 Invisible to programmers 

− Programmer programs Pentium 4 as same as 486 processor 

 



Terminology 
 CISC (Complex Instruction Set Computer) 

 Each instruction is complex 
− Instructions of different sizes, many instruction formats, allow computations on 

memory data, … 
 A large number of instructions in ISA 
 Architectures until mid 80’s 

− Examples: x86, VAX 

 RISC (Reduced Instruction Set Computer) 
 Each instruction is simple 

− Fixed size instructions, only a few instruction formats 
 A small number of instructions in ISA 
 Load-store architectures 

− Computations are allowed only on registers 
 Data must be transferred to registers before computation 

 Most architectures built since 80’s 
− Examples: MIPS, ARM, PowerPC, Alpha, SPARC, IA64, PA-RISC, etc. 



Terminology 
 Word 

 Default data size for computation 
− Size of a GPR & ALU data path depends on the word size 

 GPR stands for general purpose (integer) registers 
 ALU stands for arithmetic and logic unit 

 The word size determines if a processor is a 8b, 16b, 32b, or 64b processor 

 Address (or pointer) 
 Points to a location in memory 
 Each address points to a byte (byte addressable) 
 If you have a 32b address, you can address 232 bytes = 4GB 
 If you have a 256MB memory, you need at least 28 bit address since 228 = 

256MB 

 Caches 
 Faster but smaller memory close to processor 

− Fast since they are built using SRAMs, but more expensive 
 

 



Terminology 
 Interrupt 

 A mechanism by which I/O devices may interrupt the normal sequencing of 
the processor 

 Provided primarily as a way to improve processor utilization since most I/O 
devices are much slower than the processor 

 More formally, interrupt can be defined as below: 
− Forced transfer of control to a procedure (handler) due to external 

events (interrupts) or due to an erroneous condition (exceptions) 
− External interrupt is caused by external events (IO devices) and 

asynchronous 
− Exceptions are caused by processor internally at erroneous condition 
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Serial Processing 

 Earliest computers 
 No operating system until mid 1950s 

− programmers interacted directly with the computer hardware 
 Computers ran from a console with display lights, toggle switches, 

some form of input device, and a printer 

 Problems 
 Scheduling 

− Most installations used a hardcopy sign-up sheet to reserve 
computer time. However, time allocations could run short or 
long, resulting in wasted time 

 Setup time 
− A considerable amount of time was spent just on setting up the 

program to run. Compile/link/load require mounting tapes, 
setting up card decks, etc. 

 Early computers were very expensive 
− Important to maximize processor utilization 

 
 

 



ENIAC 

 Source:  Wikipedia 



The Von Neumann Machine & IAS 

 Source:  IAS 



Simple Batch Systems 
 Monitor 

 Job is submitted to computer operator who 
batches them together and places them on 
an input device 
− This simple batch system is called a 

monitor 
 User no longer has direct access to 

processor 
 Program branches back to the monitor 

when finished 

 Monitor point of view 
 Monitor controls the sequence of events 
 Resident monitor is a software always in 

memory 
 Monitor reads in jobs and gives control 
 Job returns control to monitor 

 
 

 Source: Pearson 



Batch Systems: Problems 

 Processor is often idle  
 Even with automatic job sequencing 
 I/O devices are slow compared to processor 

 



Multiprogrammed Batch System 

 When one job needs to wait for I/O, the processor 
can switch to the other job, which is likely not 
waiting for I/O 
 Also known as multitasking 
 Memory can be expanded to hold three, four, or more programs 

 Source: Pearson 



Multiprogramming Example 

 Source: Pearson 



Effects on Resource Utilization 

Table 2.2   Effects of Multiprogramming on Resource Utilization  

 Source: Pearson 



Time-Sharing Systems 

 Can be used to handle multiple interactive jobs 
 In a time-sharing system, minimizing response time is more important than 

maximizing throughput (processor utilization) 
 Multiple users simultaneously access the system through terminals, with 

the OS interleaving the execution of each user program in time slice  



Compatible Time-Sharing Systems 

 CTSS: One of the first time-sharing OS 
 Developed at MIT by a group known as Project MAC 
 Ran on a computer with 32,000 36-bit words of main memory, with the 

resident monitor consuming 5000 words 
 To simplify both the monitor and memory management a program was 

always loaded to start at the location of the 5000th word 

 
 Time Slicing 

 System clock generates interrupts at a rate of approximately one every 
0.2 seconds 

 At each interrupt OS regained control and could assign processor to 
another user 

 Old user programs and data were written out to disk 
 Old user program code and data were restored in main memory when 

that program was next given a turn 



CTSS Operation 

 Source: Pearson 



OS Basics: Process 
 Process 

 An instance of a program in 
execution 

 A process contains 
three components: 
 An executable program 
 The associated data  
 The execution context (or 

“process state”)  
− Process registers 
− Include information 

such as the process 
priority 

− Internal data by which 
the OS is able to 
supervise and control 
the process 

 
 Source: Pearson 



Memory Management 

 Virtual Memory 
 A facility that allows programs to address memory from a logical point 

of view, without regard to the amount of main memory physically 
available 

 Conceived to meet the requirement of having multiple user jobs reside 
in main memory concurrently 
 

 Paging 
 Allows processes to be comprised of a number of fixed-size blocks, 

called pages 
 Program references a word by means of a virtual address 

− Consists of a page number and an offset within the page 
− Each page may be located anywhere in main memory 

 Provides for a dynamic mapping between the virtual address used in 
the program and a real (or physical) address in main memory 



Memory Hierarchy 
 Motivated by 

 Principles of Locality 
 Speed vs. Size vs. Cost tradeoff 

 Locality principle  
 Spatial Locality: nearby references are likely 

− Example: arrays, program codes 
− Access a block of contiguous words  

 Temporal Locality: references to the same location is likely to occur soon 
− Example: loops, reuse of variables 
− Keep recently accessed data to closer to the processor 

 Speed vs. Size tradeoff 
 Bigger memory is slower: SRAM - DRAM - Disk 
 Fast memory is more expensive 

 



Levels of Memory Hierarchy 
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Virtual Memory 

 Source: Pearson 



Virtual Memory 

 Source: Pearson 



Modern OS 
 Architecture 

 Microkernel 
 Multithreading 
 Symmetric multiprocessing (SMP) 
 Distributed OS 
 Object-oriented design 

 Virtualization: virtual machine 
 OS for muticores 
 Examples 

Microsoft Windows 
 UNIX 
 Linux 

 



Homework 1 
 Read Chapter 1 
 Read Chapter 2 
 Exercise 2.1 
 Exercise 2.3 
 Exercise 2.5 
 Read Chapter 3 
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