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Limitations of Superscalar Processors 

 Hardware complexity of wide-issue processors 

 Limited instruction fetch bandwidth 

 Taken branches and branch prediction throughput 

 Quadratic (or more) increase in hardware complexity in 

 Renaming logic 

 Wakeup and selection logic 

 Bypass logic 

 Register file access time 

 

 On-chip wire delays prevent centralized shared resources  

 End-to-end on-chip wire delay grows rapidly from 2-3 clock cycles in 0.25 to 20 clock 

cycles in sub 0.1 technology 

 This prevents centralized shared resources 

 

 Limitations of available ILP 

 Even with aggressive wide-issue implementations 

 The amount of ILP exploitable is less than 5~6 instructions per  cycle 

 



Today’s Microprocessor 

 CPU 2013 – looking back to year 2001 according to Moore’s law 
 256X increase in terms of transistors 

 256X performance improvement, however, 

 Wider issue rate increases the clock cycle time 

 Limited amount of ILP in applications 

 Diminishing return in terms of   
 Performance and resource utilization 

 

 Intel i7 Processor 

 Technology 

 32nm process, 130W, 239 mm² die, 1.17B transistors 

 3.46 GHz, 64-bit 6-core 12-thread processor 

 159 Ispec, 103 Fspec on SPEC CPU 2006 (296MHz UltraSparc II 
processor as a reference machine) 

 14-stage 4-issue out-of-order (OOO) pipeline optimized for multicore 
and low power consumption 

 64bit Intel architecture (x86-64) 

 256KB L2 cache/core, 12MB L3 Caches 

 Goals 
 Scalable performance and more efficient resource utilization 
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Approaches 

 MP (Multiprocessor) approach 

 Decentralize all resources 

 Multiprocessing on a single chip 

 Communicate through shared-memory: Stanford Hydra 

 Communicate through messages: MIT RAW 

 MT (Multithreaded) approach 

 More tightly coupled than MP  

 Dependent threads vs. independent threads 

 Dependent threads require HW for inter-thread synchronization and communication 

 Examples: Multiscalar (U of Wisconsin), Superthreading (U of Minnesota), DMT, Trace Processor 

 Independent threads: Fine-grain multithreading, SMT 

 Centralized vs. decentralized architectures 

 Decentralized multithreaded architectures 

 Each thread has a separate pipeline 

 Multiscalar, Superthreading  

 Centralized multithreaded architectures 

 Share pipelines among multiple threads 

 TERA, SMT (throughput-oriented), Trace Processor, DMT (performance-oriented) 

 



MT Approach 

 Multithreading of Independent Threads 

 No inter-thread dependency checking and no inter-thread communication 

 Threads can be generated from 

 A single program (parallelizing compiler) 

 Multiple programs (multiprogramming workloads) 

 Fine-grain Multithreading 

 Only a single thread active at a time 

 Switch thread on a long latency operation (cache miss, stall) 

 MIT April, Elementary Multithreading (Japan) 

 Switch thread every cycle – TERA, HEP 

 Simultaneous Multithreading (SMT) 

 Multiple threads active at a time  

 Issue from multiple threads each cycle 

 Multithreading of Dependent Threads  

 Not adopted by commercial processors due to complexity and only marginal 

performance gain 



SMT (Simultaneous Multithreading) 

 Motivation 

 Existing multiple-issue superscalar architectures do not utilize resources 

efficiently 

 Intel Pentium III, DEC Alpha 21264, PowerPC, MIPS R10000 

 Exhibit horizontal and vertical pipeline wastes 
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SMT Motivation 

 Fine-grain Multithreading 

 HEP, Tera, MASA, MIT Alewife 

 Fast context switching among multiple independent threads 

 Switch threads on cache miss stalls – Alewife 

 Switch threads on every cycle – Tera, HEP 

 Target vertical wastes only 

 At any cycle, issue instructions from only a single thread 

 Single-chip MP 

 Coarse-grain parallelism among independent threads in a different processor 

 Also exhibit both vertical and horizontal wastes in each individual processor 

pipeline 

 



SMT Idea 

 Idea 

 Interleave multiple independent threads into the pipeline every cycle 

 Eliminate both horizontal and vertical pipeline bubbles  

 Increase processor utilization  

 Require added hardware resources 

 Each thread needs its own PC, register file, instruction retirement & exception 

mechanism 

 How about branch predictors? - RSB, BTB, BPT 

 Multithreaded scheduling of instruction fetch and issue 

 More complex and larger shared cache structures (I/D caches) 

 Share functional units and instruction windows 

 How about instruction pipeline? 

 Can be applied to MP architectures 

 



Multithreading of Independent Threads 

Comparison of pipeline issue slots in three different architectures 

Superscalar 
Fine-grained 

Multithreading 

Simultaneous 

Multithreading 
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Experimentation 

 Simulation 

 Based on Alpha 21164 with following differences 

 Augmented for wider-issue superscalar and SMT 

 Larger on-chip L1 and L2 caches 

 Multiple hardware contexts for SMT 

 2K-entry bimodal predictor, 12-entry RSB 

 SPEC92 benchmarks 

 Compiled by Multiflow trace scheduling compiler 

 No extra pipeline stage for SMT 

 Less than 5% impact 

 Due to the increased (1 extra cycle) misprediction penalty 

 SMT scheduling  

 Context 0 can schedule onto any unit; context 1 can schedule on to any unit 

unutilized by context 0, etc. 

 



Where the wastes come from? 

8-issue superscalar processor 

execution time distribution 

 

- 19% busy time (~ 1.5 IPC) 

(1) 37% short FP dependences 

(2) Dcache misses 

(3) Long FP dependences 

(4) Load delays 

(5) Short integer dependences 

(6) DTLB misses 

(7) Branch misprediction 

- 1+2+3 occupies 60% 

- 61% wasted cycles are vertical 

- 39% are horizontal 
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Machine Models 

 Fine-grain multithreading - one thread each cycle 

 SMT - multiple threads each cycle 

 full simultaneous issue - each thread can issue up to 8 each cycle 

 four issue - each thread can issue up to 4 each cycle 

 dual issue - each thread can issue up to 2  each cycle 

 single issue - each thread issue 1 each cycle 

 limited connection - partition FUs to threads 

 8 threads, 4 INT, each INT can receive from 2 threads 
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Performance 

Saturated at 3 IPC 

bounded by vertical wastes 

Sharing degrades performance: 

35%slow down of 1st priority thread 

 due to competition 

Each thread need not utilize 

all resources; dual issue is  

almost as effective as full issue 
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SMT vs. MP 

MP’s advantage: simple scheduling, faster private cache access - both are not modeled 
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Exercises and Discussion 

 Compare SMT versus MP on a single chip in terms of 

cost/performance and machine scalability. 

 Discuss the bottleneck in each stage of a OOO 

superscalar pipeline. 

 What is the additional hardware/complexity required for 

SMT implementation? 


