
Microprocessor Microarchitecture

Multithreading

Lynn Choi

School of Electrical Engineering

Limitations of Superscalar Processors

 Hardware complexity of wide-issue processors

 Limited instruction fetch bandwidth

 Taken branches and branch prediction throughput

 Quadratic (or more) increase in hardware complexity in

 Renaming logic

 Wakeup and selection logic

 Bypass logic

 Register file access time

 On-chip wire delays prevent centralized shared resources

 End-to-end on-chip wire delay grows rapidly from 2-3 clock cycles in 0.25 to 20 clock

cycles in sub 0.1 technology

 This prevents centralized shared resources

 Limitations of available ILP

 Even with aggressive wide-issue implementations

 The amount of ILP exploitable is less than 5~6 instructions per cycle

Today’s Microprocessor

 CPU 2013 – looking back to year 2001 according to Moore’s law
 256X increase in terms of transistors

 256X performance improvement, however,

 Wider issue rate increases the clock cycle time

 Limited amount of ILP in applications

 Diminishing return in terms of
 Performance and resource utilization

 Intel i7 Processor

 Technology

 32nm process, 130W, 239 mm² die, 1.17B transistors

 3.46 GHz, 64-bit 6-core 12-thread processor

 159 Ispec, 103 Fspec on SPEC CPU 2006 (296MHz UltraSparc II
processor as a reference machine)

 14-stage 4-issue out-of-order (OOO) pipeline optimized for multicore
and low power consumption

 64bit Intel architecture (x86-64)

 256KB L2 cache/core, 12MB L3 Caches

 Goals
 Scalable performance and more efficient resource utilization

Intel Corp. All rights reserved

http://ark.intel.com/ProductCollection.aspx?brand=39681
http://ark.intel.com/ProductCollection.aspx?brand=39681
http://en.wikipedia.org/wiki/File:Intel_Corei7_Ex2009.png
http://en.wikipedia.org/wiki/File:Core_i7_920_quad_front_and_back.jpg

Approaches

 MP (Multiprocessor) approach

 Decentralize all resources

 Multiprocessing on a single chip

 Communicate through shared-memory: Stanford Hydra

 Communicate through messages: MIT RAW

 MT (Multithreaded) approach

 More tightly coupled than MP

 Dependent threads vs. independent threads

 Dependent threads require HW for inter-thread synchronization and communication

 Examples: Multiscalar (U of Wisconsin), Superthreading (U of Minnesota), DMT, Trace Processor

 Independent threads: Fine-grain multithreading, SMT

 Centralized vs. decentralized architectures

 Decentralized multithreaded architectures

 Each thread has a separate pipeline

 Multiscalar, Superthreading

 Centralized multithreaded architectures

 Share pipelines among multiple threads

 TERA, SMT (throughput-oriented), Trace Processor, DMT (performance-oriented)

MT Approach

 Multithreading of Independent Threads

 No inter-thread dependency checking and no inter-thread communication

 Threads can be generated from

 A single program (parallelizing compiler)

 Multiple programs (multiprogramming workloads)

 Fine-grain Multithreading

 Only a single thread active at a time

 Switch thread on a long latency operation (cache miss, stall)

 MIT April, Elementary Multithreading (Japan)

 Switch thread every cycle – TERA, HEP

 Simultaneous Multithreading (SMT)

 Multiple threads active at a time

 Issue from multiple threads each cycle

 Multithreading of Dependent Threads

 Not adopted by commercial processors due to complexity and only marginal

performance gain

SMT (Simultaneous Multithreading)

 Motivation

 Existing multiple-issue superscalar architectures do not utilize resources

efficiently

 Intel Pentium III, DEC Alpha 21264, PowerPC, MIPS R10000

 Exhibit horizontal and vertical pipeline wastes

IEEE All rights reserved

SMT Motivation

 Fine-grain Multithreading

 HEP, Tera, MASA, MIT Alewife

 Fast context switching among multiple independent threads

 Switch threads on cache miss stalls – Alewife

 Switch threads on every cycle – Tera, HEP

 Target vertical wastes only

 At any cycle, issue instructions from only a single thread

 Single-chip MP

 Coarse-grain parallelism among independent threads in a different processor

 Also exhibit both vertical and horizontal wastes in each individual processor

pipeline

SMT Idea

 Idea

 Interleave multiple independent threads into the pipeline every cycle

 Eliminate both horizontal and vertical pipeline bubbles

 Increase processor utilization

 Require added hardware resources

 Each thread needs its own PC, register file, instruction retirement & exception

mechanism

 How about branch predictors? - RSB, BTB, BPT

 Multithreaded scheduling of instruction fetch and issue

 More complex and larger shared cache structures (I/D caches)

 Share functional units and instruction windows

 How about instruction pipeline?

 Can be applied to MP architectures

Multithreading of Independent Threads

Comparison of pipeline issue slots in three different architectures

Superscalar
Fine-grained

Multithreading

Simultaneous

Multithreading

IEEE All rights reserved

Experimentation

 Simulation

 Based on Alpha 21164 with following differences

 Augmented for wider-issue superscalar and SMT

 Larger on-chip L1 and L2 caches

 Multiple hardware contexts for SMT

 2K-entry bimodal predictor, 12-entry RSB

 SPEC92 benchmarks

 Compiled by Multiflow trace scheduling compiler

 No extra pipeline stage for SMT

 Less than 5% impact

 Due to the increased (1 extra cycle) misprediction penalty

 SMT scheduling

 Context 0 can schedule onto any unit; context 1 can schedule on to any unit

unutilized by context 0, etc.

Where the wastes come from?

8-issue superscalar processor

execution time distribution

- 19% busy time (~ 1.5 IPC)

(1) 37% short FP dependences

(2) Dcache misses

(3) Long FP dependences

(4) Load delays

(5) Short integer dependences

(6) DTLB misses

(7) Branch misprediction

- 1+2+3 occupies 60%

- 61% wasted cycles are vertical

- 39% are horizontal

IEEE All rights reserved

Machine Models

 Fine-grain multithreading - one thread each cycle

 SMT - multiple threads each cycle

 full simultaneous issue - each thread can issue up to 8 each cycle

 four issue - each thread can issue up to 4 each cycle

 dual issue - each thread can issue up to 2 each cycle

 single issue - each thread issue 1 each cycle

 limited connection - partition FUs to threads

 8 threads, 4 INT, each INT can receive from 2 threads

IEEE All rights reserved

Performance

Saturated at 3 IPC

bounded by vertical wastes

Sharing degrades performance:

35%slow down of 1st priority thread

 due to competition

Each thread need not utilize

all resources; dual issue is

almost as effective as full issue

IEEE All rights reserved

SMT vs. MP

MP’s advantage: simple scheduling, faster private cache access - both are not modeled

IEEE All rights reserved

Exercises and Discussion

 Compare SMT versus MP on a single chip in terms of

cost/performance and machine scalability.

 Discuss the bottleneck in each stage of a OOO

superscalar pipeline.

 What is the additional hardware/complexity required for

SMT implementation?

