Communication Signals

(Haykin Sec. 2.I and Ziemer Sec.2.4-Sec. 2.5) KECE321 Communication Systems I

Lecture \#4, March 14, 2012 Prof. Young-Chai Ko

Review

- Singular functions
- Unit step function
- Dirac delta function (Unit impulse function)
- Signum (Sign) function
- Generalized Fourier series
- Integral-square error

Summary of Today's Lecture

- Fourier series
- Generalized Fourier series
- Complex Fourier series
- Examples
- Fourier transform

Generalized Fourier Series

- Generalized Fourier series:
- representation of signals as a series of orthogonal functions
- Recall the vector space:
- Given any vector A in three-dimensional space can be expressed in terms of three vectors \mathbf{x}, \mathbf{y}, and \mathbf{z} that do not all lie in the sample plane

$$
\mathbf{A}=A_{1} \mathbf{x}+A_{2} \mathbf{y}+A_{3} \mathbf{z}
$$

- where A_{1}, A_{2}, and A_{3} are appropriately chosen constants.
- The vectors \mathbf{x}, \mathbf{y}, and \mathbf{z} are said to be linearly independent since no one of them can be expressed as a linear combination of the other two. For example, it is impossible to write $\mathbf{x}=\alpha \mathbf{y}+\beta \mathbf{z}$, no matter what choice is made for the constants α and β
- Such a set of linearly independent vectors is said to form a basis set for a threedimensional vector space. Such vectors span a three-dimensional vector space in the sense that any vector A can be expressed as a linear combination of them.
- Similarly, consider the problem of representing a time function, or signal, $x(t)$ on a T-second interval $\left(t_{0}, t_{0}+T\right)$, as a similar expansion.
- We consider a set of time functions $\phi_{1}(t), \phi_{2}(t), \cdots, \phi_{N}(t)$, which are specified independently of $x(t)$, and seek a series expansion of the form

$$
x_{a}(t)=\sum_{n=1}^{N} X_{n} \oint_{n}(t), \quad t_{0} \leq t \leq t_{0}+T
$$

the N coefficients X_{n} are independent of time and the subscript a indicates that $x_{a}(t)$ is considered an approximation.

- We assume that the $\phi_{n}(t)^{\prime}$ s are linearly independent; that is, no one of them can be expressed as a weighted sum of the other $N-1$. A set of linearly independent $\phi_{n}(t)^{\prime}$ s will be called a basis function set.
- We now wish to examine the error in the approximation of $x(t)$ by $x_{a}(t)$. As in the case of ordinary vectors, the expansion $x_{a}(t)=\sum_{n=1}^{N} X_{n} \phi_{n}(t)$ is easiest to use if the $\phi_{n}(t)^{\prime} \mathrm{s}$ are orthogonal on the interval $\left(t_{0}, t_{0}+T\right)$.
- That is,

$$
\int_{t_{0}}^{t_{0}+T} \phi_{m}(t) \phi_{n}^{*}(t) d t=c_{n} \delta_{n m} \triangleq\left\{\begin{array}{ll}
c_{n}, & n=m \\
0, & n \neq m
\end{array} \quad(\text { all } m \text { and } n)\right.
$$

where, if $c_{n}=1$ for all n, the $\phi_{n}(t)^{\prime}$ s are said to be normalized.

- A normalized orthogonal wet of functions is called on orthogonal basis set.
- $\delta_{m n}$ is called the Kronecker delta function, is defined as unity if $m=n$, and zero otherwise.
- The error in the approximation will be measured in the integral-square sense (ISE)

$$
\text { Error }=\epsilon_{N}=\int_{T}\left|x(t)-x_{a}(t)\right|^{2} d t
$$

where $\int_{T}() d t$ denotes the integration over t from t_{0} to $t_{0}+T$.

- The ISE is an applicable measure of error only when $x(t)$ is an energy signal or a power signal. If $x(t)$ is an energy signal of infinite duration, the limit as $T \rightarrow \infty$ is taken.
- We now find the set of coefficients X_{n} that minimizes the ISE. Substituting $x_{a}(t)$ into ISE, expressing the magnitude square of the integrand as the integrand times its complex conjugate and expanding, we obtain

$$
\begin{aligned}
\epsilon_{N}= & \int_{T}|x(t)|^{2} d t-\sum_{n=1}^{N}\left[X_{n}^{*} \int_{T} x(t) \phi_{n}^{*}(t) d t+X_{n} \int_{T} x^{*}(t) \phi_{n}(t) d t\right] \\
& +\sum_{n=1}^{N} c_{n}\left|X_{n}\right|^{2}
\end{aligned}
$$

- To find the X_{n} 's that minimizes ϵ_{N} we add and subtract the quantity

$$
\sum_{n=1}^{N} \frac{1}{c_{n}}\left|\int_{T} x(t) \phi_{n}^{*}(t) d t\right|^{2}
$$

which yields

$$
\epsilon_{N}=\int_{T}|x(t)|^{2} d t-\sum_{n=1}^{N} \frac{1}{c_{n}}\left|\int_{T} x(t) \phi_{n}^{*}(t) d t\right|^{2}+\sum_{n=1}^{N} c_{n}\left|X_{n}-\frac{1}{c_{n}} \int_{T} x(t) \phi_{n}^{*}(t) d t\right|^{2}
$$

- The first two terms on the right-hand side of ϵ_{N} are independent of the coefficients X_{n}. Since the last sum on the right-hand side is nonnegative, we will minimize ϵ_{N} if we choose each X_{n} such that the corresponding term in the sum is zero. Thus, since $c_{n}>0$, the choice of

$$
X_{n}=\frac{1}{c_{n}} \int_{T} x(t) \phi_{n}^{*}(t) d t
$$

for X_{n} minimizes the ISE.

The resulting minimum-error coefficients will be referred to as the Fourier coefficients.

- Minimum value for ϵ_{n}

$$
\begin{aligned}
\left(\epsilon_{n}\right)_{\min } & =\int_{T}|x(t)|^{2} d t-\sum_{n=1}^{N} \frac{1}{c_{n}}\left|\int_{T} x(t) \phi_{n}^{*}(t) d t\right|^{2} \\
& =\int_{T}|x(t)|^{2} d t-\sum_{n=1}^{N} c_{n}\left|X_{n}\right|^{2}
\end{aligned}
$$

- If we can find an infinite set of orthonormal functions such that $\lim _{N \rightarrow \infty}\left(\epsilon_{N}\right)_{\text {min }}=0$ for any signal that is integrable square,

$$
\int_{T}|x(t)|^{2} d t<\infty
$$

we say that the $\phi_{n}(t)$'s are complete. In the sense that the ISE is zero, we may then write

$$
x(t)=\sum_{n=1}^{\infty} X_{n} \phi_{n}(t) \quad(\mathrm{ISE}=0)
$$

Assuming a complete orthogonal set of functions, we obtain the relation

$$
\int_{T}|x(t)|^{2} d t=\sum_{n=1}^{N} c_{n}\left|X_{n}\right|^{2}
$$

This equation is known as Parseval's theorem.

In general, equation $\lim _{N \rightarrow \infty}\left(\epsilon_{N}\right)_{\min }=0$ requires that $x(t)$ be equal to $x_{a}(t)$ as $N \rightarrow \infty$.

- Example, The signal $x(t)$ is to be approximated by a two-term generalized Fourier series

$$
x(t)= \begin{cases}\sin (\pi t), & 0 \leq t \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

- The Fourier coefficients are calculated as

$$
\begin{aligned}
& X_{1}=\int_{0}^{2} \phi_{1}(t) \sin (\pi t) d t=\int_{0}^{1} \sin (\pi t) d t=\frac{2}{\pi} \\
& X_{2}=\int_{0}^{2} \phi_{2}(t) \sin (\pi t) d t=\int_{1}^{2} \sin (\pi t) d t=-\frac{2}{\pi}
\end{aligned}
$$

- Thus the generalized two-term Fourier series approximation for this signal is

$$
x_{a}(t)=\frac{2}{\pi} \phi_{1}(t)-\frac{2}{\pi} \phi_{2}(t)=\frac{\pi}{2}\left[\operatorname{rect}\left(t-\frac{1}{2}\right)-\operatorname{rect}\left(t-\frac{3}{2}\right)\right]
$$

- Space interpretation

- Minimum ISE

$$
\left(\epsilon_{N}\right)_{\min }=\int_{0}^{2} \sin ^{2}(\pi t) d t-2\left(\frac{2}{\pi}\right)^{2}=1-\frac{8}{\pi^{2}} \approx 0.189
$$

Complex Exponential Fourier Series

- Consider a signal $x(t)$ defined over the interval $\left(t_{0}, t_{0}+T\right)$ with the definition

$$
\omega_{0}=2 \pi f_{0}=\frac{2 \pi}{T_{0}}
$$

we define the complex exponential Fourier series as

$$
x(t)=\sum_{n=-\infty}^{\infty} X_{n} e^{j n \omega_{0} t}, \quad t_{0} \leq t \leq t+0+T_{0}
$$

where

$$
X_{n}=\frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} x(t) e^{-j n \omega_{0} t} d t
$$

- It can be shown to represent the signal $x(t)$ exactly in the interval $\left(t_{0}, t_{0}+T_{0}\right)$, except at a point of jump discontinuity where it converges to the arithmetic mean of the left-hand and right-hand limits.
- Outside the interval $\left(t_{0}, t_{0}+T_{0}\right)$, nothing is guaranteed.
- However, we note that the right-hand side of the complex exponential Fourier series is period with period T_{0}, since it is the sum of periodic rotating phasors with harmonic frequencies.

If $x(t)$ is periodic with period T_{0}, the Fourier series is an accurate representation for $x(t)$ for all t (except at points of discontinuity).

- A useful observation about a complete orthonormal-series expansion of a signal is that the series is unique.
- For example, if we somehow find a Fourier expansion for a signal $x(t)$, we know that no other Fourier expansion for that $x(t)$ exists, since $\left\{e^{j n \omega_{0} t}\right\}$ forms a complete set.
- Example

Consider the signal $x(t)=\cos \left(\omega_{0} t\right)+\sin ^{2}\left(2 \omega_{0} t\right)$ where $\omega_{0}=2 \pi / T_{0}$. Find the complex exponential Fourier series.

Solution: Using trigonometric identities and Euler's theorem, we obtain

$$
\begin{aligned}
x(t) & =\cos \left(\omega_{0} t\right)+\frac{1}{2}-\frac{1}{2} \cos \left(4 \omega_{0} t\right) \\
& =\frac{1}{2} e^{j \omega_{0} t}+\frac{1}{2} e^{-j \omega_{0} t}+\frac{1}{2}-\frac{1}{4} e^{j \omega_{0} t}-\frac{1}{4} e^{-j \omega_{0} t}
\end{aligned}
$$

- Hence,

$$
\begin{aligned}
X_{0} & =\frac{1}{2} \\
X_{1} & =\frac{1}{2}=X_{-1} \\
X_{4} & =\frac{1}{4}=X_{-4}
\end{aligned}
$$

Symmetry Properties of Fourier Coefficients

- Assuming $x(t)$ is real. Then we can show

$$
X_{n}^{*}=X_{-n}
$$

- Writing $X_{n}=\left|X_{n}\right| e^{j \angle X_{n}}$, we have

$$
\left|X_{n}\right|=\left|X_{-n}\right| \text { and } \angle X_{n}=-\angle X_{-n}
$$

- Using Euler's theorem, Fourier coefficient can be rewritten

$$
\begin{aligned}
X_{n} & =\frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} x(t) e^{-j n \omega_{0} t} d t \\
& =\frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} x(t) \cos \left(n \omega_{0} t\right) d t-\frac{j}{T} \int_{t_{0}}^{t_{0}+T_{0}} x(t) \sin \left(n \omega_{0} t\right) d t
\end{aligned}
$$

Trigonometric Form of the Fourier Series

- Recall the Fourier series

$$
x(t)=\sum_{n=-\infty}^{\infty} X_{n} e^{j n \omega_{0} t} \quad X_{n}=\frac{1}{T_{0}} \int_{T_{0}} x(t) e^{-j n \omega_{0} t} d t
$$

- Assuming $x(t)$ real, we can regroup the complex exponential Fourier series by paris of terms of the form

$$
\begin{aligned}
X_{n} e^{j n \omega_{0} t}+X_{-n} e^{-j n \omega_{0} t} & =\left|X_{n}\right| e^{j\left(n \omega_{0} t+\angle X_{n}\right)}+\left|X_{-n}\right| e^{-j\left(\text { nomega } a_{0} t+\angle X_{n}\right)} \\
& =2\left|X_{n}\right| \cos \left(n \omega_{0} t+\angle X_{n}\right)
\end{aligned}
$$

- Hence, we can rewrite the Fourier series as

$$
x(t)=X_{0}+\sum_{n=1}^{\infty} 2\left|X_{n}\right| \cos \left(n \omega_{0} t+\angle X_{n}\right)
$$

- Using the trigonometric identity given as

$$
\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)
$$

we can rewrite Fourier series as

$$
x(t)=X_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(n \omega_{0} t\right)+\sum_{n=1}^{\infty} B_{n} \sin \left(n \omega_{0} t\right)
$$

where

$$
\begin{aligned}
& A_{n}=2\left|X_{n}\right| \cos \angle X_{n}=\frac{2}{T_{0}} \int_{T_{0}} x(t) \cos \left(n \omega_{0} t\right) d t \\
& B_{n}=-2\left|X_{n}\right| \sin \angle X_{n}=\frac{2}{T_{0}} \int_{T_{0}} x(t) \sin \left(n \omega_{0} t\right) d t
\end{aligned}
$$

Example: Periodic Pulse Train

- Find the complex Fourier coefficients X_{n}

$$
x(t)=\left\{\begin{array}{l}
A, \quad-\frac{T}{2} \leq t \leq \frac{T}{2} \\
0, \quad \text { for the remainder of the period }
\end{array}\right.
$$

fundamental frequency: $f_{0}=\frac{1}{T_{0}}$

- Complex Fourier coefficients X_{n}

$$
\begin{aligned}
X_{n} & =\int_{-T / 2}^{T / 2} A \exp \left(-j 2 \pi n f_{0} t\right) d t \\
& =\left.\frac{A}{-j 2 \pi n f_{0}} \exp \left(-j 2 \pi n f_{0} t\right)\right|_{t=-T / 2} ^{t=T / 2} \\
& =A \frac{\left[\exp \left(-j \pi n f_{0} T\right)-\exp \left(j \pi n f_{0} T\right)\right]}{-j 2 \pi n f_{0}} \\
& =\frac{A}{\pi n f_{0}} \frac{\left[\exp \left(j \pi n f_{0} T\right)-\exp \left(-j \pi n f_{0} T\right)\right]}{j 2} \\
& =\frac{A}{\pi n f_{0}} \sin \left(\pi n f_{0} T\right)=A T \operatorname{sinc}\left(n f_{0} T\right)
\end{aligned}
$$

where we define sinc function as

$$
\operatorname{sinc}(x)=\frac{\sin (\pi x)}{\pi x}
$$

Sinc Function

- Definition

$$
\operatorname{sinc}(x)=\frac{\sin (\pi x)}{\pi x}
$$

Amplitude and Phase Spectrum

Fourier Transform

- Now we want to generalize the Fourier series to represent aperiodic signals using the Fourier series form given as

$$
\begin{gathered}
x(t)=\sum_{n=-\infty}^{\infty} X_{n} e^{j n \omega_{0} t}, \quad t_{0} \leq t \leq t+0+T_{0} \\
X_{n}=\frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} x(t) e^{-j n \omega_{0} t} d t
\end{gathered}
$$

- Consider nonperiodic signal $x(t)$ but is an energy signal.
- In the interval $|t|<\frac{1}{2} T_{0}$, we can represent $x(t)$ as

$$
x(t)=\sum_{n=-\infty}^{\infty}\left[\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} x(\lambda) e^{-j 2 \pi n f_{0} \lambda} d \lambda\right] e^{j n 2 \pi n f_{0} t}, \quad|t|<\frac{T_{0}}{2}
$$

- where $f_{0}=1 / T_{0}$.

To represent $x(t)$ for all time, we simply let $T_{0} \rightarrow \infty$ such that

$$
n f_{0}=n / T_{0} \rightarrow f, \quad 1 / T_{0} \rightarrow d f, \quad \sum_{n=-\infty}^{\infty} \rightarrow \int_{-\infty}^{\infty}
$$

Thus

$$
x(t)=\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} x(\lambda) e^{-j 2 \pi f \lambda} d \lambda\right] e^{j 2 \pi f t} d f
$$

Defining

$$
X(f)=\int_{-\infty}^{\infty} x(\lambda) e^{-j 2 \pi f \lambda} d \lambda
$$

we can rewrite

$$
x(t)=\int_{-\infty}^{\infty} X(f) e^{j 2 \pi f t} d f
$$

