

두 모집단의 모수에 대한 추론

고려대학교 경영대학 박 광태

→ 모평균의 가설검정(표본이 서로 독립적일 때:모분산이 기지(旣知)이거나 표본이 클 경우)

$$H_0: \mu_1 - \mu_2 = \mu_0$$

$$H_1: \mu_1 - \mu_2 \neq \mu_0$$

기각역:

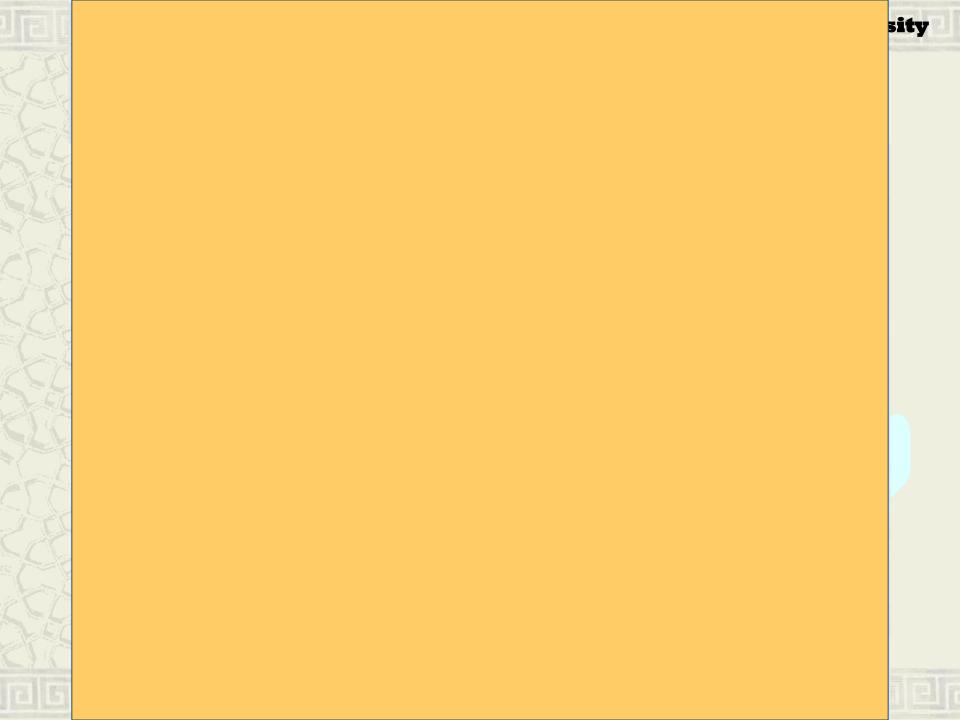
$$|Z| > z_{\frac{a}{2}}$$
 이면 기각

검정통계량

$$Z = \frac{(\overline{x_1} - \overline{x_2}) - \mu_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

 $\mu_1 - \mu_2$ 에 대한 100(1- α)% 신뢰구간

$$CI = (\overline{X_1} - \overline{X_2}) \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$


예제 10-1

해동치약은 자사의 죽염치약이 어린이 충치예방에 효과가 있다고 주장하고 있다. 죽염치약을 사용하지 않는 어린이 100명 (n_1) 을 무작위추출하여 충치 수를 관찰한 결과, $X_1=2.7$ 이고 $S_1^2=1.1$ 로 나타났다. 또 죽염치약을 사용하는 어린이 120명 (n_2) 에 대한 X_2 와 S_2^2 은 각각 2.4와 0.9였다. 일반치약과 죽염치약의 평균충치 수의 차이 $(\mu_1-\mu_2)$ 에 대한 90% 신뢰구간을 구하시오.

예제 10-3

예제 1의 문제에서 대립가설 $H_A: \mu_1 - \mu_2 > 0$ 에 대하여 유의수준 0.05에서 검정하시오.

- → 모평균의 가설검정 (표본이 서로 독립적일 때:모분산이 미지(未知)이나 서로 같고 표본이 작을 때)
 - → 검정통계량

$$t = \frac{(\overline{x_1} - \overline{x_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}}$$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

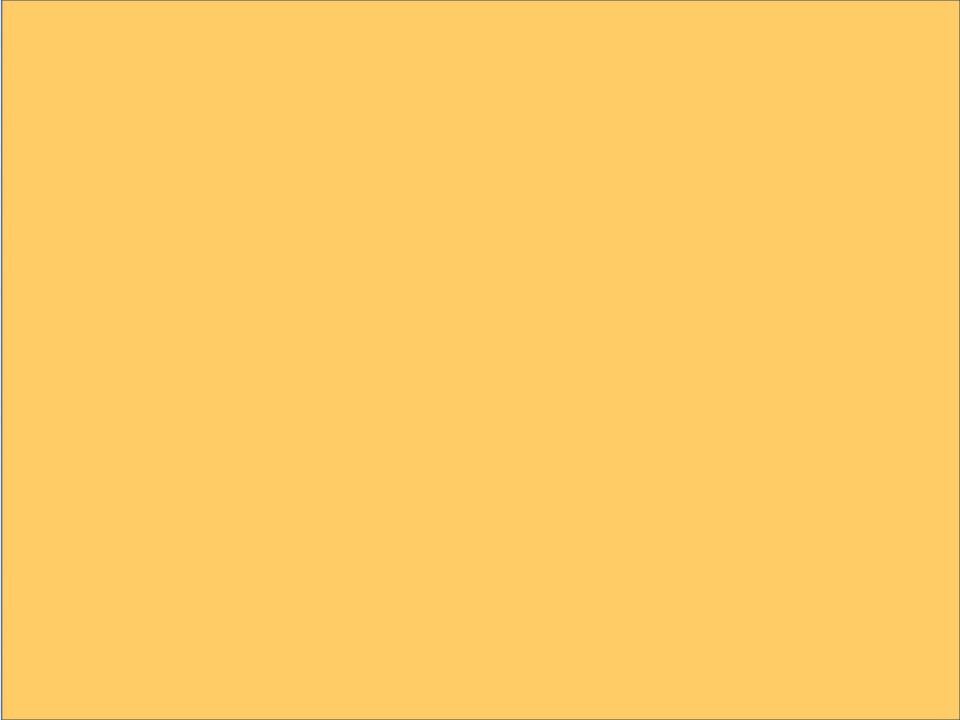
• $\mu_1 - \mu_2$ 에 대한 $100(1-\alpha)$ % 신뢰구간

$$CI = (\overline{X_1} - \overline{X_2}) \pm t_{n_1 + n_2 - 2, \frac{\alpha}{2}} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

예제 10-5

K사는 이동통신업체의 새로운 강자로 부상하고 있는 신흥업체이다. K사는 최근 새로운 스마트폰 제품을 통하여 모바일사업 분야로 그 영역을 넓혀가려고 한다. 이러한 새로운 사업진입을 위한 마케팅전략을 수립하기 위해 L과장이 영입되었다.

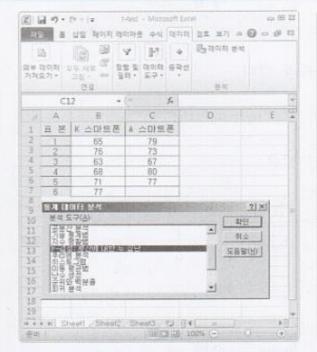
L과장은 고려전자의 K스마트폰과 안암전자의 A스마트폰 중 어느 제품을 통해 모바일사업을 확장해야 할지 고민에 빠지게 되었다. 따라서 L과장은 M리서치 회사에 두 제품에 대한 소비자 만족도 조사를 의뢰하였다.


M리서치 회사는 두 제품의 소비자 만족도를 측정하기 위해 무작위로 소비자들을 추출하여 각 제품에 대한 만족도를 100점 만점으로 측정하였다.

그 결과는 표 10-1과 같다. 만족도는 대체로 정규분포를 따르며, 두 스마트폰에 대한 만족도의 분산 은 동일하다고 가정한다.

표 10-1 두 표본의 소비자 만족도

표 본			소비자	만족도		
K스마트폰	65	76	63	68	71	77
A스마트폰	79	73	67	80	77	


- (a) 두 표본의 소비자 만족도 차이 $\mu_1 \mu_2$ 에 대한 95% 신뢰구간을 구하시오.
- (b) K스마트폰의 소비자 만족도가 A스마트폰의 소비자 만족도보다 높다고 할 수 있는지를 5 %의 유의수준에서 검정하시오.

컴퓨터 활용 [

표 10-1의 자료를 그림 10-2와 같이 입력한다. 그리고 나서 데이터 메뉴에서 데이터 분석을 선택하여 두 집단 간 등분산인지 아닌지를 그림 10-2와 같이 F검정을 이용하여 분석하면 그림 10-3의 결과가 나타난다.

그림 10-2 F검정 선택 및 대화상자

	다 분석	15 tes	P1 +	S Y	B	à	-34
	4	- 24	및 데이터 음작선 - 도구·	- 85	25.4	110E1	
			f.		01	E	
72		D	C 	1	2 - 1046	A 班 世 1 2 3 4 5 5 5	1 2 3 4 5 6 7 8 9 10
	최건 취소 도등당(2	[9051 5057 [9051 5056	¥((2):	1 0 E (250 250 250 250 250	11 12 13 14 15 16
		1	[505]	(2) (2) (2) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		0.1	17 18 19 19

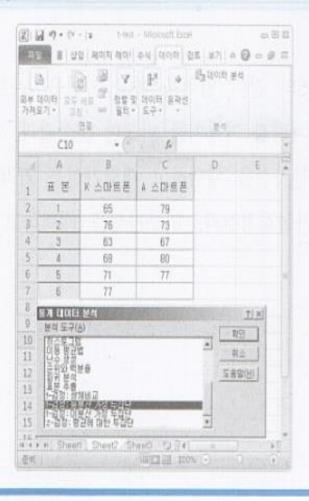

두 집단의 등분산에 대한 가설검정결과와 $H_0: \sigma_K^2 = \sigma_A^2$, $H_A: \sigma_K^2 \neq \sigma_A^2$ 인 가설에서 p값을 이용한 가설검정결과 그리고 F검정통계량과 F기각치를 비교한 결과, 대립가설을 기각하고 귀무가설을 채택하므로 두 집단 간 분산이 같다.

그림 10-3 F검정의 결과

-	an.			-test - Microsoft Excel		- B1
(E)	288 5	40 9	이자 책이아운	수회 이어리 걸!	1 27	00000
S.W.	16 많이티 5 오기 -	00 m s	ordered to the		日 日 日 4 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	fic Pronter
	FI	2 -	- fe			
- 7	A	8	C	0	E	F S
1	五足	K 스마트폰	A 스마트폰	F-검정: 분산에 대한 /	두 집단	
2	1	65	79	DADINAMINA IV		
3	2	75	73	A LANGER	K스마트폰	A A PEE
4	3	63	67	평균	70	75.2
5	4	68	80	분산	32.8	28.2
6	5	71	77	관측수	6	5
7.	6	77		자유도	5	4.
1				F비	1.163120567	
9				P(F<=f) 단즉 검정	0.454512608	
10				F 기작치: 단축 검정	6.256056502	
		ort Sheet	Sheet3 (2)	Bel	200))
是机					THE 100% (-)	

두 집단의 분산에 대한 검정결과, 등분산이라는 귀무가설이 채택되었으므로 엑셀의 '데이터-데이터 분석'에서 그림 10-4와 같이 『t-검정: 등분산가정 두 집단』을 선택한다. 만약 문제에서 두 집단의 분산이 동일하지 않은 것으로 주어지면 『t-검정: 이분산가정 두 집단』을 선택하면 된다. 그림 10-4에서 확인을 누르면 그림 10-5의 대화상자가 나타나게 된다.

그림 10-4 t검정: 등분산가정 두 집단 선택

변수 1의 입력범위는 B1부터 B7까지 지정하고, 변수 2의 입력범위에는 C1에서 C7까지를 지정한다. 또한 가설평균차는 두 집단 간에 차이가 있는지 없는지에 관한 것이기 때문에 0을 입력한다. 또한 변수 입력 시 K스마트폰, A스마트폰이 포함되어 있으므로 첫 번째 행은 이름표로 사용하도록 선택한다.

그림 10-5 t검정: 등분산가정 두 집단 대화상자

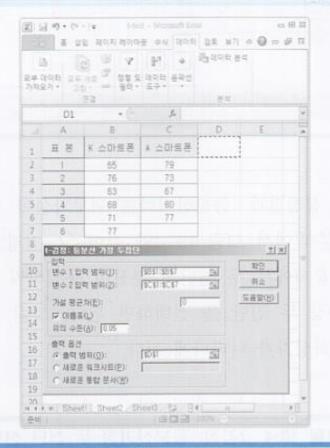


그림 10-5와 같이 입력을 하고 확인을 누르면 그림 10-6과 같은 결과가 출력된다. t통계량과 기각치를 비교한 분석결과, 가설검정에 양측검정을 이용하게 되므로 귀무가설을 채택하고 대립가설을 기각한다고 해석할 수 있다. 또한 p값에 의한 가설검정결과, 귀무가설을 채택하고 대립가설을 기각하는 것으로 나타났다.

그림 10-6 t검정: 등분산가정 두 집단의 결과

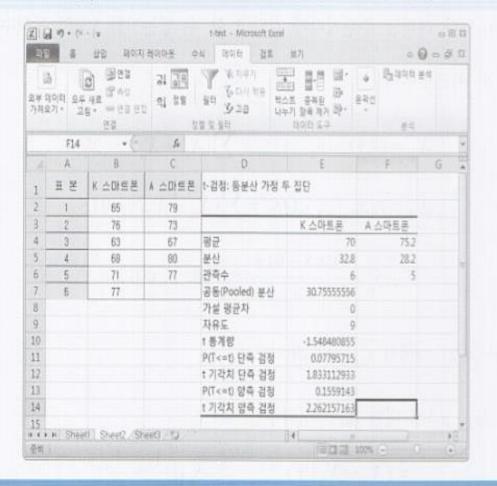


그림 10-6에서 보는 바와 같이 양측검정과 단측검정 모두 p값(=0.07795715) 이 유의수준 0.05보다 크므로 귀무가설을 채택하고 대립가설을 기각하게 된다. 따라서 K스마트폰이 A스마트폰보다 소비자 만족도가 크다고 할 수 없다.

모비율에 대한 가설검정

→ 모비율의 가설검정

$$H_0: p_1 - p_2 = 0$$

$$H_1: p_1 - p_2 \neq 0$$

검정통계량

$$Z = \frac{(\hat{p}_1 - \hat{p}_2) - \theta}{\sqrt{\frac{\hat{p}\hat{q}}{n_1} + \frac{\hat{p}\hat{q}}{n_2}}}$$

◈※ 참고 : 이 경우 두 모집단이 동일한 모비율을 갖고 있다는 의미로

$$\widehat{p} = \frac{n_1 \widehat{p}_1 + n_2 \widehat{p}_2}{n_1 + n_2}$$

을 이용한다.

예제 10-2

두 종류의 냉장고 A와 B에 대한 품질보증기간은 각각 1년이다. A상표의 냉장고 중 50개를 무작위추출하여 관찰하였더니 그중 12개가 품질보증기간 중에 고장이 발생하였다. 또 B상표에 대해서도 60개를 임의로 추출하여 조사한 결과, 12개가 품질보증기간 중에 고장이 발생하였다. 품질보증기간 중 이 두 상표의 고장률의 차이 (p_1-p_2) 에 대한 98% 신뢰구간을 구하시오.

예제 10-4

예제 2에서 귀무가설과 대립가설이 각각 $H_0: p_1=p_2,\ H_A: p_1\neq p_2$ 로 주어졌을 때, 유의수준 0.05에서 가설검정을 하시오.

모분산에 대한 가설검정

- → 두 정규모집단의 분산 비교
 - ◆ t분포를 이용 모평균을 비교하려면 등분산의 가정을 전제로 하여야 하는데 이때 가정이 적합한지에 대한 분석이 선행되어야 한다.
- → 모분산에 대한 가설검정

$$H_0: \sigma_1^2 = \sigma_2^2$$

$$H_1: \sigma_1^2 \neq \sigma_2^2$$

 $H_0: \frac{\sigma_1^2}{\sigma_2^2} = 1$

- lacksquare 표본분산 s_1^2 , s_2^2 계산
- ▶ 기각역

$$F < F_{n_1-1,n_2-1,1-\frac{\alpha}{2}}$$

$$F > F_{n_1 - 1, n_2 - 1, \frac{\alpha}{2}}$$

또는

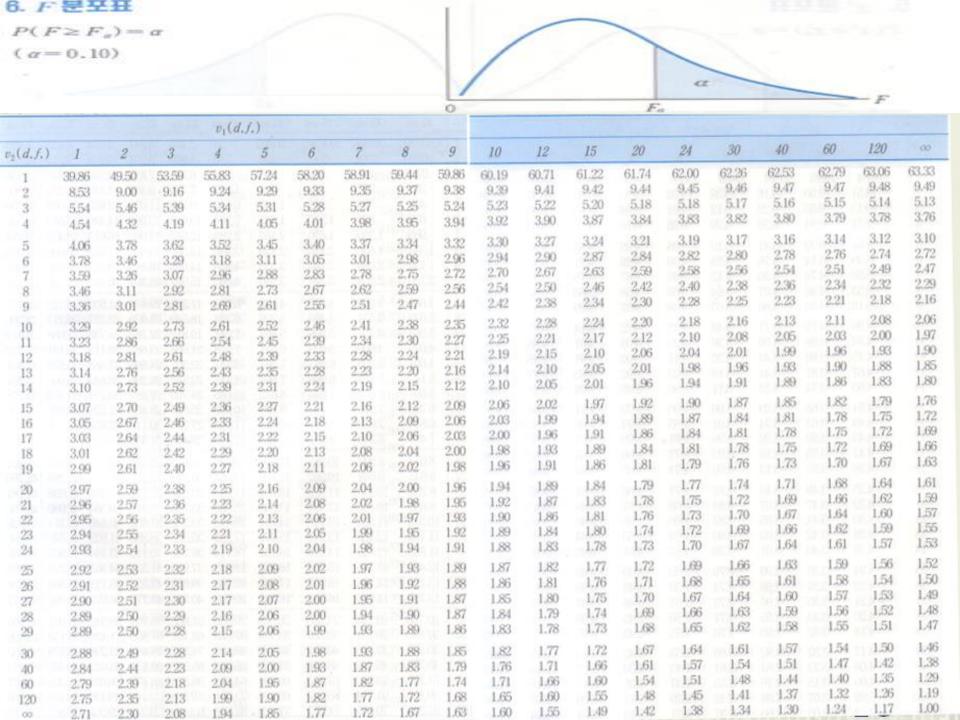
이면 H_{θ} 기각 (양측검정)

모분산에 대한 가설검정

검정통계량

$$F = \frac{S_1^2}{S_2^2}$$

 $\frac{\sigma_1^2}{\sigma_2^2}$ 에 대한 100(1- α)% 신뢰구간


$$F_{n_2-1,n_1-1,1-\frac{\alpha}{2}} \frac{S_1^2}{S_2^2} \le \frac{\sigma_1^2}{\sigma_2^2} \le F_{n_2-1,n_1-1,\frac{\alpha}{2}} \frac{S_1^2}{S_2^2}$$

F 분포

$$F_{n_1-1,n_2-1} = \frac{\chi_{n_1-1}^2 / (n_1-1)}{\chi_{n_2-1}^2 / (n_2-1)}$$

$$F_{n_1-1,n_2-1,1-\frac{\alpha}{2}} = \frac{1}{F_{n_2-1,n_1-1,\frac{\alpha}{2}}}$$

◆ F분포표 보는 방법 pp.504-513 표->다음 슬라이드

예제 10-9

증권시장에 상장되어 있는 주식 중 제조업종과 금융업종 주식에 대한 수익률의 분산을 비교하려고 한다. $31(n_1)$ 개의 제조업종과 $21(n_2)$ 개의 금융업종 주식으로 이루어진 독립표본을 얻어 각각에 대한 표본 분산 $S_1^2=9.4$ 와 $S_2^2=7.0$ 을 얻었다. σ_1^2/σ_2^2 에 대한 95% 신뢰구간을 구하시오.

예제 10-10

예제 9에서 제조업종 주식의 분산이 금융업종 주식의 분산보다 크다고 할 수 있는지 유의수준 0.05에서 검정하시오.

모평균의 가설검정-2)

▶ 모평균의 가설검정(표본이 서로 종속적일때 (대응 표본))

$$H_{o}:\mu_{d}=\mu_{o}$$

$$H_1: \mu_d \neq \mu_0$$

검정통계량

$$t = \frac{d - \mu_0}{s_d / \sqrt{n}}$$

여기서

$$d_{i} = x_{i_{1}} - x_{i_{2}}, \overline{d} = \frac{\sum d_{i}}{n}$$

$$S_{d}^{2} = \frac{\sum (d_{i} - \overline{d})^{2}}{n - 1}$$

$$S_d^2 = \frac{\sum (d_i - d_i)^2}{n - 1}$$

예제 10-11

두 가지 종류의 윤활유 첨가제 A와 B의 주행거리에 대한 효과를 비교하기 위해 10대의 차량을 무작위로 추출하여 표 10-4와 같은 대응표본을 얻었다. $H_0:\mu_d=0,\ H_A:\mu_d\neq 0$ 에 대해 유의수준 0.05에서 검정하시오.

표 10-4 자동차의 주행거리

차 량	첨가제 A	첨가제 B	d_i
1	14	16	-2
2	21	24	-3
3	19	20	-1
4	11	15	-4
5	15	17	-2
6	16	19	-3
7	8	10	-2
8	32	33	-1
9	37	39	-2
10	10	11	-1

컴퓨터 활용 🎞

표 10-4의 자료를 그림 10-14와 같이 입력한다.

그림 10-14 t검정: 쌍체비교 선택

대응표본의 경우 데이터 메뉴에서 데이터 분석을 선택하면 그림 10-14의 화면이 나타난다. 여기서 『t-검정: 쌍체비교』를 선택한다. 그림 10-14에서 확인을 누르면 그림 10-15의 대화상자가 나타난다.

그림 10-15 t검정: 쌍체비교 대화상자

2011	10.00	TV.	QEBE - Name			-81
Ta	1 1		이지 레이어를 우리 의	25 00	1677	0 0 0 0 H
2# 1 7/45	160(B) 25 27 * 33		ts to be		* ****	Re Pade Re
C	1 - 6	fi.				4
7	A	8	C D	E F		G H Z
1	청기제A	참가제B	Fast salus	MERCHOON .	H20000	1×
2	14	16	일학			119
3	21	24	분수 [입력 범위(]):	[\$4\$ 34\$]	54	
4	19	20	森のこの森 和出口:	[481] [481]	50	明企
5	11	15	기설 광근차(E):	F		SERVED
6	15	17	DOMECO			
7	16	19	井当 今至(A): [0.05			
8	8	10	95 55			TOTAL BOX
9	32	33	(F 會問 信利(Q)):	KH	100	
10	37	39	(C) 建草是 有豆以豆(E):			1 100
11	10	11	C 사람은 변합 문사(Y)			
12		-	Sheed 5	116		

여기서 각 입력칸에 셀범위를 지정한다. 현재 귀무가설이 윤활유 첨가 전후의 주행거리에 차이가 없다는 것이므로 가설평균차에는 0을 입력한다. 유의수준 0.05를 입력하고 출력범위를 지정한 후 확인을 누르면 그림 10~16과 같이 결과가 주어진다.

*** *** *** *** *** *** *** *** *** **	- 3r-	2 · 3· 2 · 3·	9 0
#이번가 및 · · · · · · · · · · · · · · · · · ·	- #1-	a- n-	
A 8 C D E 1 철가체A 철가제B t-검정: 방제 비교 2 14 16 3 21 24 청가제A 철가제B 4 19 20 평균 18,30000 20,40000 5 11 15 분산 89,78889 86,26667 6 15 17 관측수 10,00000 10,00000 7 16 19 미어슨 상관계수 0,99458 8 8 10 가설 평균자 0,00000 9 32 33 자유도 9,00000 10 37 39 t 통계량 -6,67799 11 10 11 P(T<=1) 단즉 검정 0,00005		20	
1 청가제A 청가제B 1-검정: 황제 비교 2 14 16 3 21 24 청가제A 청가제A 청가제A 4 19 20 평균 18.30000 20.40000 5 11 15 분산 89.78889 86.26667 6 15 17 관측수 10.00000 10.00000 7 16 19 피어슨 상관 계수 0.99458 8 10 가설 평균차 0.00000 9 32 33 자유도 9.00000 10 37 39 t 통계량 -6.67799 11 10 11 P(T<=1) 단즉 검정 0.00005			
2 14 16 3 21 24 청가제A 참가제B 4 19 20 평균 18.30000 20.40000 5 11 15 분산 89.78889 86.26667 6 15 17 관측수 10.00000 10.00000 7 16 19 피어슨 상관계수 0.99458 8 8 10 가설 평균자 0.00000 9 32 33 자유도 9.00000 10 37 39 t 통계량 -6.67799 11 10 11 P(T<=1) 단즉 검정	F	F	
2 14 16 3 21 24 청가제A 청가제A 청가제A 4 19 20 평균 18.30000 20.40000 5 11 15 분산 89.78889 86.26667 6 15 17 관측수 10.00000 10.00000 7 16 19 피어슨 상관계수 0.99458 8 8 10 가설 평균자 0.00000 9 32 33 자유도 9.00000 10 37 39 t 통계량 -6.67799 11 10 11 P(T<=1) 단즉 검정			
4 19 20 평균 18,30000 20,40000 5 11 15 분선 89,78889 86,26667 6 15 17 관측수 10,00000 10,00000 7 16 19 미어슨 상관 계수 0,99458 8 8 10 가설 평균자 0,00000 9 32 33 자유도 9,00000 10 37 39 t 통계량 -6,67799 11 10 11 P(T<=1) 단즉 검정			
5 11 15 분선 89,78889 86,26667 6 15 17 권축수 10,00000 10,00000 7 16 19 피어슨 상관 계수 0,99458 8 10 가설 평균자 0,00000 9 32 33 자유도 9,00000 10 37 39 1 통계량 -6,67799 11 10 11 P(T<=1) 단축 검정			
6 15 17 권축수 10.00000 10.00000 7 16 19 피어슨 상관 계수 0.99458 8 10 가설 평균자 0.00000 9 32 33 자유도 9.00000 10 37 39 t 통계량 -6.67799 11 10 11 P(T<=1) 단축 검정			
7 16 19 피어슨 상관 계수 0.99458 8 10 가설 평균자 0.00000 9 32 33 자유도 9.00000 10 37 39 t 통계량 -6.67799 11 10 11 P(T<=1) 단즉 검정			
8 8 10 가설 평균차 0.00000 9 32 33 자유도 9.00000 10 37 39 t 통계량 -6.67799 11 10 11 P(T<=1) 단즉 검정 0.00005			
9 32 33 자유도 9,00000 10 37 39 t 통계량 -6,67799 11 10 11 P(T<=1) 단즉 검정 0,00005			
10 37 39 t 등계량 -6.67799 11 10 11 P(T<=0) 단즉 경쟁 0.00005			
11 10 11 P(T<=1) 단족 검정 0.00005			
12 t 기작치 단축 검점 1.83311			
13 P(T<=1) 양축 검정 0.00009			
14 t 기각치 양즉 검정 2.3			

그림 10-16에서 보는 바와 같이 양측검정의 경우 p값(0.00009)이 유의수 준 0.05보다 크지 않으므로 귀무가설을 기각하게 된다. 따라서 첨가제의 사용이 주행거리에 영향을 미친다고 결론짓는다.