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Algorithm Design 

• So far, we focused on the efficient 
implementation of algorithms 
– Actual data structures ignored 

– The programmer is in charge 

 

• Shift to the design of algorithms 

– Five common types of algorithms to solve 
problems 

– At least one of them works for many problems 
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Algorithm Design Types 

1. Greedy Algorithms 

2. Divide and Conquer 

3. Dynamic Programming 

4. Randomized Algorithms 

5. Backtracking Algorithms 
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Greedy Algorithms 

• Work in phases. 

• In each phase, a decision is made that appears 
to be good, ignoring future consequences 

• Take local optimum now, hoping that it is equal 
to the global optimum. 

– If this is the case, the algorithm is correct 

– Otherwise, it produced a suboptimal solution 

• Simple greedy algorithms for approximate 
answers.  

• More complicated algorithms for exact answer 



• Dijkstra’s, Prim’s, and Kruskal’s algorithms 

• Coin-changing problem 

– To make change in U.S. currency, repeatedly 
dispense the largest denomination 

  (Ex) 17.61 dollars 

      one ten-dollar bill 

      one five-dollar bill 

          two one-dollar bills 

          two quarters, one dime, one penny 

      → minimize the number of bills and coins 

 

         

     

Greedy Algorithms: Examples 
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Input: 

• Jobs j1, j2, …, jN, all with known running 
times t1, t2, …, tN, respectively. 

• A single processor 

 

Goal: 

• A best schedule to minimize the average 
completion time of jobs 

• Assuming non-preemptive scheduling 

A Simple Scheduling Problem 
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Example: Four jobs 
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Figure 10.2  Schedule #1 

Average completion time 
= (15 + 23 + 26 + 36) / 4 
= 100 / 4  
=  25 



Example: Four jobs 

2014-02-05 Weiss, Data Structures & Alg's 8 

Figure 10.3  Schedule #2 (optimal) 

Average completion time 
= (3 + 11 + 21 + 36) / 4 
= 71 / 4  
= 17.75 



Example: Four jobs 
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Input: 

• Jobs j1, j2, …, jN, all with known running 
times t1, t2, …, tN, respectively. 

• A number P of processors 

 

Goal: 

• A best schedule to minimize the average 
completion time of jobs 

• Assuming non-preemptive scheduling 

The Multiprocessor Case 
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Example 
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Fig 10.5  An optimal solution  

P1 

P2 

P3 

 Mean completion time 

 = (3+5+6+13+16+20+28+34+40) / 9 

 = 165 / 9 = 18.33 



Example 
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Fig 10.6  A second optimal solution  

P1 

P2 

P3 

 Mean completion time 

 = (3+5+6+14+15+20+30+34+38) / 9 

 = 165 / 9 = 18.33 



Final completion time 
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• What if we are only interested in when the last 
job finishes: final completion time 

• In the previous two schedules, these completion 
times are 40 and 38. 

• In the next schedule, 

       the final completion time is 34. However, 

       its total completion time is 168. 

• Generally, total completion time and final 
completion time do not go together. 



Final completion time 
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Fig 10.7  Minimizing final completion time 

P1 

P2 

P3 

 Mean completion time 

= 168 / 9 = 18.66 



• Known as file compression 

• The normal ASCII character set consists of 
roughly 100 printable characters 

• 7 bits are required to distinguish them. 

• An eighth bit is added as a parity check. 

• If the size of the character set is C, then |logC| 
bits are needed in a standard encoding 

Huffman Codes 
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• Suppose that a file contains only a, e, i, s, t, 
blanks and newlines  with the following frequency: 

 

Example 
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58 

Fig 10.8 Using a standard coding scheme 



• In real life, files can be very large. 

• There is usually a big disparity between the 
most frequent and least frequent characters. 

• Reducing the file size might be preferred in 
some cases such as transmitting over a slow 
network line. 

• Can achieve 25% or more savings on typical 
large files 

• The general strategy is to use short codes for 
frequently occurring characters 

Huffman Codes 
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• The binary code for the alphabet can be 
represented by the binary tree. 

Tree Representation 
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Fig 10.9 Representation of the original code in a tree 

0 

0 

0 1 

1 

1 

0 

Total bits = 174 



Tree Representation 
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Fig 10.10 A slightly better tree 

Total bits = 173 



1. The optimal tree should be a full tree: All 
nodes either are leaves or have two children 

– Otherwise, nodes with only one child could move 
up a level. 

 

2. The characters should be placed only at the 
leaves: Any sequence of bits can be decoded 
unambiguously. 

– If a character is contained in a nonleaf node, it 
is not possible to guarantee that the decoding 
will be unambiguous. 

Observations 
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Optimal prefix code 
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• Prefix code: No character code is a prefix of 
another character code. 

Fig 10.11 Optimal prefix code 

Total bits = 146 
0 

0 

0 

1 

1 

1 

0 

0 



Optimal prefix code 
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58 

Fig 10.12 Optimal prefix code 



• How the coding tree is constructed? 

• By Huffman in 1952. 

• The coding system is called as Huffman code 
 

• Algorithm sketch: Given a forest of C single 
node trees-one for each character. The weight 
of a tree is equal to the sum of the frequencies 
of its leaves. C-1 times, select the two trees, T1 
and T2, of smallest weight, breaking ties 
arbitrarily, and form a new tree with subtrees 
T1and T2 

Huffman Codes 
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Example (1/6) 
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Example (2/6) 
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Example (3/6) 
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Example (4/6) 
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Example (5/6) 
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Example (6/6) 
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Extended Binary Tree 

• Augment binary tree with a special “square” 
node at every place there is a null link: external 
node 

• Every binary tree with n nodes has n+1 null links. 

• Every binary tree with n nodes has n+1 external 
nodes.  

• External (Internal) path length E(I)of a binary 

tree is the sum of the lengths of the paths from 
the root to all external (internal) nodes 
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Extended Binary Tree 

external node 

internal node  
I = 0 + 1 + 1 + 2 + 3 = 7 

E = 2 + 2 + 2 + 3 + 4 + 4 = 17  
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Properties 

• The internal and external path lengths I and E of 
a binary tree with n internal nodes are related by 
the formula E = I +2n. 

• It follows that binary trees with the maximum E 
also have maximum I. 

• Question: Over all binary trees with n internal 
nodes, what is the maximum and minimum 
possible values for I ? 

• The worst case is when the tree is 

          I = ∑ i = n*(n-1) / 2 
i=0 

n-1 
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Properties 

• For minimum I, put as many internal nodes 
as close to the root as possible. 

 

             0 + 2 * 1 + 4 * 2 + 8 * 3 + ... 
 

      →  ∑ |log k| = O(n*logn) 

 

• One such example: Complete binary tree 

1 

n 
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Weighted External Path Length 

• From a set of n +1 positive weights q1,q2,..., 
qn+1,  each of the n +1 external nodes in a 
binary tree is associated with one of the weights. 

 

• Weighted External Path Length  
 

          WE = ∑ qi * ki    
 

    where ki is the distance from the root node to 
the external node with weight qi 

1 

n+1 
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Example 

2 

5 

15 

4 

2 4 5 15 

WE = 2*3 +4*3+5*2+15*1  

        = 43 

WE = 2*2 +4*2+5*2+15*2  

        = 52 
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Application 

• An optimal set of codes for messages M1,..., 
Mn+1 to transmit the corresponding messages. 

• At the receiving end, the code will be decoded 
using a decode tree. 

• A decode tree is a binary tree in which external 
nodes represent messages 

• The binary bits in the codes determine the 
branching needed at each level of the decode 
tree to reach the correct external node. 
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Decode tree 

• Codes for messages 
 

     M1 : 0 0 0 

     M2 : 0 0 1 

     M3 : 0 1 

     M4 : 1 
       

• The cost of decoding a code word 
is proportional to the number of 
bits in the code  

• Is equal to the distance of the 
corresponding external node from 
the root node. 

M1 

M3 

M4 

M2 

0 

1 

1 0 

0 

1 

Huffman codes 



38 

Problem Formalism 

• Assume qi is the relative frequency with which 
message Mi will be transmitted, then the 
expected decode time is 

          T =  ∑ qi * di    

    where di is the distance of the external node 
for the message Mi from the root node 

• The expected decode time is minimized by 
choosing code words resulting in a decode tree 
with minimal weighted external path length 

 

1 

n+1 
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Algorithm 

procedure HUFFMAN (L, n) { 

   //L is a list of n single node binary trees  

   for i = 1 to n-1 do { 

       GETNODE(T);   //create a new binary tree by 

       LCHILD(T) ← LEAST(L); //combining the trees with 

       RCHILD(T) ← LEAST(L); //the two smallest weights 

       WT(T) ← WT(LCHILD(T)) + WT(RCHILD(T)); 

       INSERT (L, T) 

     } 

} 
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Example 

q1 = 2, q2 = 3, q3 = 5, q4 = 7, q5 = 9, and q6 = 13 

3 2 

5 
10 

5 

2 

5 

3 

7 

16 

9 10 

5 

2 

5 

3 

23 

13 



Approximate Bin Packing 
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• Solve the bin packing problem 

• Run quickly but will not necessarily produce 
optimal solutions 

• The solutions are not too far from optimal 



Approximate Bin Packing 
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• Input 

   N items of size s1, s2, …, sN where 0<si≤ 1 

 

• Goal 

   Pack the items in the fewest no. of bins. 



Optimal Packing 
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• 7 items with sizes 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8 

Fig 10.20  Optimal packing 

1 



• Two versions 

– On-line bin packing : each item must be placed 
in a bin before the next item can be processed 
and the decision can’t be changed 

 

– Off-line bin packing: it is not necessary to do 
anything until all the input has been read 

Bin Packing Algorithm 
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• An on-line algorithm cannot always give an 
optimal solution. 

• Theorem:  There are inputs that force any 
on-line bin packing algorithm to use at least 
4/3 the optimal number of bins. 

• Three simple algorithms that guarantee that 
the number of bins used is no more than 
twice optimal. 

On-line Algorithms 
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• Probably the simplest algorithm 

• When processing any item, check whether it fits 
in the same bin as the last item. 

– If it does, it is placed there 

– Otherwise, a new bin is created. 

Next Fit 
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Next fit 
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Fig 10.21  Using Next fit 

• 7 items with sizes 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8 



• (Theorem10.2) Let M be the optimal number of 
bins required to pack a list I of items. Then next 
fit never uses more than 2M bins. There exist 
sequences such that next fit uses 2M – 2 bins. 

Next Fit 
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Example for Theorem 10.2 
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Fig 10.22 Optimal packing for 0.5, 2/N, 0.5, 2/N,… 
      where N is divisible by 4 



Example for Theorem 10.2 

2014-02-05 Weiss, Data Structures & Alg's 50 

Fig 10.23 Next fit packing for 0.5, 2/N, 0.5, 2/N,… 



• To scan the bins in order and place the new 
item in the first bin that is large enough to 
hold it. 

• A new bin is created only when the results 
of previous placements have left no other 
alternative. 

• Processing  each item by scanning down 
the list of bins sequentially, which would 
take O (N 2) 

First Fit 
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First Fit 
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Fig 10.24  Using First fit (4 bins) 

• Items with sizes 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8 



(Theorem 10.3)  

Let M be the optimal number of bins required to 
pack a list I of items. Then first fit never uses 
more than [17/10* N] bins 

 

(Ex) The input consists of 6M items of size 1/7+e, 
followed by 6M items of size 1/3+e, followed by 
6M items of size ½+e.  One simple packing places 
one item of each size in a bin and requires 6M 
bins. 

First Fit 
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First Fit: Worst Case 
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Fig 10.25  A case where FF uses 10M 
bins instead of 6M 



Best Fit 
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• Instead of placing a new item in the fist spot 
that is found, it is placed in the tightest spot 
among all bins. 

• Even though we make a more educated choice 
of bins, the generic bad cases are the same 

• Best fit is never more than roughly 1.7 times as 
bad as optimal. 



Best Fit 
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 • Items with sizes 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8 

Fig 10.26 Best Fit 



• Can view the entire item list before producing 
an answer. 

• All the on-line algorithms have difficulty in 
packing the large items, especially when they 
occur later in the input. 

• This can be solved by sorting the items and 
placing the largest items first. 

• We can then apply first fit or best fit, yielding 
first fit decreasing and best fit decreasing, 
respectively. 

 

Off-line Algorithms 
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First Fit Decreasing 
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• Items with sizes 0.8, 0.7, 0.5, 0.4, 0.3, 0.2, 0.1 

• Optimal, but not true in general. 



• A problem that can be mathematically 
expressed recursively can also be expressed as 
a recursive algorithm. 

• In case a recursive algorithm is not efficient, 
the recursive algorithm can be rewritten as a 
non-recursive algorithm that systematically 
records the answers to the subproblems in a 
table. 

• Dynamic programming makes use of this 
approach. 

 

Dynamic Programming 
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Inefficient Fibonacci Algorithm 
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Linear Fibonacci Algorithm 
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• The recursive algorithm is slow due to repeated 
function calls 

  

Recursive algorithm 
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FN-3  3 times / FN-4  5 times / FN-5  8 times 
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Binary Search Tree 

• A binary search tree T is a binary tree; either 
it is empty or each node in the tree contains 
an identifier and: 
 

1. all identifiers in the left subtree of T are less 
than the identifier in the root node T; 

2. all identifiers in the right subtree of T are greater 
than the identifier in the root node T; 

3. the left and right subtrees of T are also binary 
search trees. 
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Two Examples 

if 

loop 

read 

while for 

if 

while loop 

read for 

Which one is more desirable in terms of search? 
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Algorithm 

procedure  SEARCH(T, X, i) { 

// search binary search tree T for X 

    i  ← T; 

    while i ≠ 0 do { 

       case { 

           :X < IDENT(i): k ← LCHILD(i) //search left tree 

           :X = IDENT(i): return 

           :X > IDENT(i): i ← RCHILD(i) //search right tree 

        } 

    } 

} 



• Input: a list of words, w1, w2,…, wN, and 
fixed probabilities p1, p2,…, pN of their 

occurrence.  

• Output: A binary search tree that minimizes 
the expected total access time or total 
number of comparisons required. 

• Hence, the tree should minimize  

Optimal Binary Search Tree 
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       T =  ∑ pi * (1 + di  )  

 where di is the depth of word wi in the tree  

1 

 n 



Sample Input 
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Possible BST #1 
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• Use a greedy approach where the word with the 
highest probability was placed at the root. 

if 

a two 

am 

and the 

egg 



Possible BST #1 
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Possible BST #2 
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• Perfectly balanced 
search tree. 



Possible BST #3 
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Comparison 
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Structure of Optimal BST 
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• Place sorted words wLeft, wLeft+1,…, wi,…, 
wRight-1, wRight  into a binary search tree.  



CLeft, Right  =  min  {  pi + CLeft, i-1 + Ci+1, Right 
 

                           + ∑ pj + ∑ pj   } 

Cost Formula 
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j=Left 

  i-1 

j=i+1 

 Right 

                 = min  {  CLeft, i-1 + Ci+1, Right + ∑ pj  } 
j=Left 

  Right 

Left≤i≤Right 

Left≤i≤Right 

• For each subrange of words starting from a single 
word, the algorithm produces the cost and root of 
the optimal BST as in the following table. 



Computation for the sample input 
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Computation of table entry for am..if 
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