Data Structures and Algorithms

- Algorithm Design Techniques -

School of Electrical Engineering Korea University

Algorithm Design

- So far, we focused on the efficient implementation of algorithms
- Actual data structures ignored
- The programmer is in charge
- Shift to the design of algorithms
- Five common types of algorithms to solve problems
- At least one of them works for many problems

Algorithm Design Types

1. Greedy Algorithms
2. Divide and Conquer
3. Dynamic Programming
4. Randomized Algorithms
5. Backtracking Algorithms

Greedy Algorithms

- Work in phases.
- In each phase, a decision is made that appears to be good, ignoring future consequences
- Take local optimum now, hoping that it is equal to the global optimum.
- If this is the case, the algorithm is correct
- Otherwise, it produced a suboptimal solution
- Simple greedy algorithms for approximate answers.
- More complicated algorithms for exact answer

Greedy Algorithms: Examples

- Dijkstra's, Prim's, and Kruskal's algorithms
- Coin-changing problem
- To make change in U.S. currency, repeatedly dispense the largest denomination
(Ex) 17.61 dollars
one ten-dollar bill
one five-dollar bill
two one-dollar bills
two quarters, one dime, one penny
\rightarrow minimize the number of bills and coins

A Simple Scheduling Problem

Input:

- Jobs $\boldsymbol{j}_{1}, \boldsymbol{j}_{2}, \cdots, \boldsymbol{j}_{\mathrm{N}}$, all with known running times $t_{1}, t_{2}, \cdots, t_{N}$, respectively.
- A single processor

Goal:

- A best schedule to minimize the average completion time of jobs
- Assuming non-preemptive scheduling

Example: Four jobs

Figure 10.2 Schedule \#1

Job	Time
j_{1}	15
j_{2}	8
j_{3}	3
j_{4}	10

Average completion time

$$
\begin{aligned}
& =(15+23+26+36) / 4 \\
& =100 / 4 \\
& =25
\end{aligned}
$$

Example: Four jobs

Figure 10.3 Schedule \#2 (optimal)

Job	Time
j_{1}	15
j_{2}	8
j_{3}	3
j_{4}	10

j_{3}	j_{2}	j_{4}	j_{1}
0	3	11	21

Average completion time
$=(3+11+21+36) / 4$
$=71 / 4$
$=17.75$

Example: Four jobs

- The second one is arranged by shortest job first, which always yields an optimal schedule.
- Generally, the total cost C of the schedule is defined by the following equation:

$$
\begin{aligned}
& \mathrm{C}=\sum_{k=1}^{n}(N-k+1) t_{i_{k}} \\
& \mathrm{C}=(N+1) \sum_{k=1}^{n} t_{i_{k}}-\sum_{k=1}^{n} k * t_{i_{k}}
\end{aligned}
$$

- The first sum is independent of the job ordering.
- The second sum affects the total cost.

The Multiprocessor Case

Input:

- Jobs $\boldsymbol{j}_{1}, \boldsymbol{j}_{2}, \cdots, \boldsymbol{j}_{\mathrm{N}}$, all with known running times $t_{1}, t_{2}, \cdots, t_{\mathrm{N}}$, respectively.
- A number P of processors

Goal:

- A best schedule to minimize the average completion time of jobs
- Assuming non-preemptive scheduling

Example

Example

Job	Time
j_{1}	3
j_{2}	5
j_{3}	6
j_{4}	10
j_{5}	11
j_{6}	14
j_{7}	15
j_{8}	18
j_{9}	20

Fig 10.6 A second optimal solution

Mean completion time

$$
\begin{aligned}
& =(3+5+6+14+15+20+30+34+38) / 9 \\
& =165 / 9=18.33
\end{aligned}
$$

Final completion time

- What if we are only interested in when the last job finishes: final completion time
- In the previous two schedules, these completion times are 40 and 38.
- In the next schedule,
the final completion time is 34 . However,
its total completion time is 168.
- Generally, total completion time and final completion time do not go together.

Final completion time

Job	Time
j_{1}	3
j_{2}	5
j_{3}	6
j_{4}	10
j_{5}	11
j_{6}	14
j_{7}	15
j_{8}	18
j_{9}	20

Fig 10.7 Minimizing final completion time

${ }^{j}$	j_{5}		8	P1
${ }^{6}$				P2
j_{1}	j_{3}	j_{4}	${ }_{7}$	P3

Mean completion time

$$
=168 / 9=18.66
$$

Huffman Codes

- Known as file compression
- The normal ASCII character set consists of roughly 100 printable characters
- 7 bits are required to distinguish them.
- An eighth bit is added as a parity check.
- If the size of the character set is C, then $|\log C|$ bits are needed in a standard encoding

Example

- Suppose that a file contains only a, e, i, s, t, blanks and newlines with the following frequency:

Character	Code	Frequency	Total Bits
a	000	10	30
e	001	15	45
i	010	12	36
s	011	3	9
t	100	4	12
space	101	13	39
newline	110	1	3
Total		58	174

Fig 10.8 Using a standard coding scheme

Huffman Codes

- In real life, files can be very large.
- There is usually a big disparity between the most frequent and least frequent characters.
- Reducing the file size might be preferred in some cases such as transmitting over a slow network line.
- Can achieve 25% or more savings on typical large files
- The general strategy is to use short codes for frequently occurring characters

Tree Representation

- The binary code for the alphabet can be represented by the binary tree.

Fig 10.9 Representation of the original code in a tree

Tree Representation

Fig 10.10 A slightly better tree

Observations

1. The optimal tree should be a full tree: All nodes either are leaves or have two children

- Otherwise, nodes with only one child could move up a level.

2. The characters should be placed only at the leaves: Any sequence of bits can be decoded unambiguously.

- If a character is contained in a nonleaf node, it is not possible to guarantee that the decoding will be unambiguous.

Optimal prefix code

- Prefix code: No character code is a prefix of another character code.

Fig 10.11 Optimal prefix code

Optimal prefix code

Character	Code	Frequency	Total Bits
a	001	10	30
e	01	15	30
i	10	12	24
s	00000	3	15
t	0001	4	16
space	11	13	26
newline	00001	1	5
Total		58	146

Fig 10.12 Optimal prefix code

Huffman Codes

- How the coding tree is constructed?
- By Huffman in 1952.
- The coding system is called as Huffman code
- Algorithm sketch: Given a forest of C single node trees-one for each character. The weight of a tree is equal to the sum of the frequencies of its leaves. $\mathrm{C}-1$ times, select the two trees, T_{1} and T_{2}, of smallest weight, breaking ties arbitrarily, and form a new tree with subtrees T_{1} and T_{2}

Example (1/6)

(a)
(c)
(i)
(t) ${ }^{4}$
$(\mathrm{sp})^{13}$

(a) 10
$(\mathrm{e})^{15}$
(i) ${ }^{12}$

$(\mathrm{sp})^{13}$

Example (2/6)

Example (3/6)

(e) ${ }^{15}$

Example (4/6)

Example (5/6)

Example (6/6)

Extended Binary Tree

- Augment binary tree with a special "square" node at every place there is a null link: external node
- Every binary tree with n nodes has $n+1$ null links.
- Every binary tree with n nodes has $n+1$ external nodes.
- External (Internal) path length $E(I)$ of a binary tree is the sum of the lengths of the paths from the root to all external (internal) nodes

Extended Binary Tree

Properties

- The internal and external path lengths I and E of a binary tree with n internal nodes are related by the formula $E=I+2 n$.
- It follows that binary trees with the maximum \boldsymbol{E} also have maximum I.
- Question: Over all binary trees with n internal nodes, what is the maximum and minimum possible values for I ?
- The worst case is when the tree is

$$
I=\sum_{i=0}^{n-1} i=n *(n-1) / 2
$$

Properties

- For minimum I, put as many internal nodes as close to the root as possible.

$$
\begin{aligned}
& 0+2 * 1+4 * 2+8 * 3+\ldots \\
\rightarrow & \sum_{1}^{n}|\log k|=o(n * \log n)
\end{aligned}
$$

- One such example: Complete binary tree

Weighted External Path Length

- From a set of $n+1$ positive weights $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots$, a_{n+1}, each of the $n+1$ external nodes in a binary tree is associated with one of the weights.
- Weighted External Path Length

$$
\mathrm{WE}=\sum_{i}^{n+1} \mathrm{a}_{i} * \mathrm{k}_{i}
$$

where k_{j} is the distance from the root node to the external node with weight a_{i}

Example

Application

- An optimal set of codes for messages M_{1}, \ldots, M_{n+1} to transmit the corresponding messages.
- At the receiving end, the code will be decoded using a decode tree.
- A decode tree is a binary tree in which external nodes represent messages
- The binary bits in the codes determine the branching needed at each level of the decode tree to reach the correct external node.

Decode tree

- Codes for messages

$$
\left.\begin{array}{l}
M_{1}: l l l \\
M_{2}:
\end{array}: 0 \begin{array}{lll}
0 & 0 & 1 \\
M_{3}: & 0 & 1 \\
M_{4}: & 1
\end{array}\right] \quad \text { Huffman codes }
$$

- The cost of decoding a code word is proportional to the number of bits in the code
- Is equal to the distance of the corresponding external node from the root node.

Problem Formalism

- Assume a_{i} is the relative frequency with which message M_{i} will be transmitted, then the expected decode time is

$$
\mathrm{T}=\sum_{I}^{n+1} \mathrm{a}_{i} * \mathrm{~d}_{i}
$$

where d_{i} is the distance of the external node for the message M_{i} from the root node

- The expected decode time is minimized by choosing code words resulting in a decode tree with minimal weighted external path length

Algorithm

procedure HUFFMAN (L, n) \{
$/ / L$ is a list of n single node binary trees
for $\mathrm{i}=1$ to $\mathrm{n}-1$ do $\{$
GETNODE(T); //create a new binary tree by
LCHILD $(T) \leftarrow$ LEAST(L); //combining the trees with RCHILD $(T) \leftarrow$ LEAST(L); //the two smallest weights WT $(T) \leftarrow$ WT(LCHILD(T)) + WT(RCHILD(T)); INSERT (L, T)
\}

Example

$$
a_{1}=2, a_{2}=3, a_{3}=5, a_{4}=7, a_{5}=9, \text { and } a_{6}=13
$$

Approximate Bin Packing

- Solve the bin packing problem
- Run quickly but will not necessarily produce optimal solutions
- The solutions are not too far from optimal

Approximate Bin Packing

- Input
N items of size $s_{1}, s_{2}, \cdots, s_{N}$ where $0<s_{i} \leq 1$
- Goal

Pack the items in the fewest no. of bins.

Optimal Packing

- 7 items with sizes $0.2,0.5,0.4,0.7,0.1,0.3,0.8$

Fig 10.20 Optimal packing

Bin Packing Algorithm

- Two versions
- On-line bin packing : each item must be placed in a bin before the next item can be processed and the decision can't be changed
- Off-line bin packing: it is not necessary to do anything until all the input has been read

On-line Algorithms

- An on-line algorithm cannot always give an optimal solution.
- Theorem: There are inputs that force any on-line bin packing algorithm to use at least $4 / 3$ the optimal number of bins.
- Three simple algorithms that guarantee that the number of bins used is no more than twice optimal.

Next Fit

- Probably the simplest algorithm
- When processing any item, check whether it fits in the same bin as the last item.
- If it does, it is placed there
- Otherwise, a new bin is created.

Next fit

- 7 items with sizes $0.2,0.5,0.4,0.7,0.1,0.3,0.8$

empty
0.5
0.2
B_{1}

Fig 10.21 Using Next fit

Next Fit

- (Theorem10.2) Let \boldsymbol{M} be the optimal number of bins required to pack a list I of items. Then next fit never uses more than $2 M$ bins. There exist sequences such that next fit uses $2 M-2$ bins.

Example for Theorem 10.2

0.5
0.5
B_{1}

Fig 10.22 Optimal packing for $0.5,2 / \mathrm{N}, 0.5,2 / \mathrm{N}, \cdots$ where N is divisible by 4

Example for Theorem 10.2

Fig 10.23 Next fit packing for $0.5,2 / \mathrm{N}, 0.5,2 / \mathrm{N}, \cdots$

First Fit

- To scan the bins in order and place the new item in the first bin that is large enough to hold it.
- A new bin is created only when the results of previous placements have left no other alternative.
- Processing each item by scanning down the list of bins sequentially, which would take $O\left(N^{2}\right)$

First Fit

- Items with sizes $0.2,0.5,0.4,0.7,0.1,0.3,0.8$

Fig 10.24 Using First fit (4 bins)

First Fit

(Theorem 10.3)
Let \boldsymbol{M} be the optimal number of bins required to pack a list I of items. Then first fit never uses more than $\left[17 / 10^{*} N\right.$] bins
(Ex) The input consists of $6 M$ items of size $1 / 7+e$, followed by $6 M$ items of size $1 / 3+e$, followed by $6 M$ items of size $\frac{1}{2}+e$. One simple packing places one item of each size in a bin and requires $6 M$ bins.

First Fit: Worst Case

empty
$1 / 7+\varepsilon$
$B_{1} \rightarrow B_{M}$

empty
$1 / 3+\varepsilon$
$1 / 3+\varepsilon$
$B_{M+1} \rightarrow B_{4 M}$

Fig 10.25 A case where FF uses 10M bins instead of 6M

Best Fit

- Instead of placing a new item in the fist spot that is found, it is placed in the tightest spot among all bins.
- Even though we make a more educated choice of bins, the generic bad cases are the same
- Best fit is never more than roughly 1.7 times as bad as optimal.

Best Fit

- Items with sizes $0.2,0.5,0.4,0.7,0.1,0.3,0.8$

Fig 10.26 Best Fit

Off-line Algorithms

- Can view the entire item list before producing an answer.
- All the on-line algorithms have difficulty in packing the large items, especially when they occur later in the input.
- This can be solved by sorting the items and placing the largest items first.
- We can then apply first fit or best fit, yielding first fit decreasing and best fit decreasing, respectively.

First Fit Decreasing

- Items with sizes $0.8,0.7,0.5,0.4,0.3,0.2,0.1$

- Optimal, but not true in general.

Dynamic Programming

- A problem that can be mathematically expressed recursively can also be expressed as a recursive algorithm.
- In case a recursive algorithm is not efficient, the recursive algorithm can be rewritten as a non-recursive algorithm that systematically records the answers to the subproblems in a table.
- Dynamic programming makes use of this approach.

Inefficient Fibonacci Algorithm

```
/**
2 * Compute Fibonacci numbers as described in Chapter 1.
*/
4 int fib( int n )
{
if( n <= 1)
return 1;
else
                                return fib( n - 1 ) + fib( n - 2 );
10 }
```


Linear Fibonacci Algorithm

```
4 int fibonacci( int n )
{ {
6 if( n <= 1 )
        return 1;
8
9 int last = 1;
10 int nextToLast = 1;
11 int answer = 1;
12 for( int i = 2; i <= n; i++ )
13 {
    answer = last + nextToLast;
    nextToLast = last;
    last = answer;
17 }
18 return answer;
19 }
```


Recursive algorithm

- The recursive algorithm is slow due to repeated function calls

$\mathrm{F}_{\mathrm{N}-3} 3$ times $/ \mathrm{F}_{\mathrm{N}-4} 5$ times $/ \mathrm{F}_{\mathrm{N}-5} 8$ times

Binary Search Tree

- A binary search tree T is a binary tree; either it is empty or each node in the tree contains an identifier and:

1. all identifiers in the left subtree of T are less than the identifier in the root node T ;
2. all identifiers in the right subtree of T are greater than the identifier in the root node T ;
3. the left and right subtrees of T are also binary search trees.

Two Examples

Which one is more desirable in terms of search?

Algorithm

procedure $\operatorname{SEARCH}(\mathrm{T}, \mathrm{X}, i)$ \{
// search binary search tree T for X
$i \leftarrow \mathrm{~T}$;
while $i \neq 0$ do $\{$
case \{
$: \mathrm{X}<\operatorname{IDENT}(i): \mathrm{k} \leftarrow \operatorname{LCHILD}(i) / /$ search left tree
:X = IDENT (i) : return
$: \mathrm{X}>\operatorname{IDENT}(i): i \leftarrow \operatorname{RCHILD}(i) / /$ search right tree
\}
\}

Optimal Binary Search Tree

- Input: a list of words, $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots, \boldsymbol{w}_{\mathrm{N}}$, and fixed probabilities $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \cdots, \boldsymbol{p}_{\mathrm{N}}$ of their occurrence.
- Output: A binary search tree that minimizes the expected total access time or total number of comparisons required.
- Hence, the tree should minimize

$$
\mathrm{T}=\sum_{T}^{n} p_{i} *\left(1+d_{i}\right)
$$

where d_{i} is the depth of word w_{i} in the tree

Sample Input

Word	Probability
a	0.22
am	0.18
and	0.20
egg	0.05
if	0.25
the	0.02
two	0.08

Possible BST \#1

- Use a greedy approach where the word with the highest probability was placed at the root.

w_{i}	p_{i}
a	0.22
am	0.18
and	0.20
egg	0.05
if	0.25
the	0.02
two	0.08
Totals	1.00

Possible BST \#1

	Input		Tree \#1	

Possible BST \#2

- Perfectly balanced search tree.

Input
Tree \#2

Word	Probability	Access Cost	
w_{i}	p_{i}	Once	Sequence
a	0.22	3	0.66
am	0.18	2	0.36
and	0.20	3	0.60
egg	0.05	1	0.05
if	0.25	3	0.75
the	0.02	2	0.04
two	0.08	3	0.24
Totals	1.00		2.70

Possible BST \#3

Comparison

Input		Tree \#1		Tree \#2		Tree \#3	
Word	Probability	Access Cost		Access Cost		Access Cost	
w_{i}	p_{i}	Once	Sequence	Once	Sequence	Once	Sequence
a	0.22	2	0.44	3	0.66	2	0.44
am	0.18	4	0.72	2	0.36	3	0.54
and	0.20	3	0.60	3	0.60	1	0.20
egg	0.05	4	0.20	1	0.05	3	0.15
if	0.25	1	0.25	3	0.75	2	0.50
the	0.02	3	0.06	2	0.04	4	0.08
two	0.08	2	0.16	3	0.24	3	0.24
Totals	1.00		2.43		2.70		2.20

Structure of Optimal BST

- Place sorted words $w_{\text {Leff }}, w_{L e f t+1}, \cdots, w_{i}, \cdots$, $w_{\text {Right-1 }}, w_{\text {Right }}$ into a binary search tree.

Cost Formula

$$
\begin{aligned}
& C_{\text {Left Right }}=\min _{\text {LeftSRKkth }}\left\{p_{i}+C_{L e f f, i-1}+C_{i+1, \text { Right }}\right. \\
& \left.+\sum_{j=\pi \in t i t}^{i=1} p_{j}+\sum_{j=i+1}^{R_{i j l} h t} p_{j}\right\}
\end{aligned}
$$

- For each subrange of words starting from a single word, the algorithm produces the cost and root of the optimal BST as in the following table.

Computation for the sample input

Computation of table entry for am..if

$$
0+0.80+0.68=1.48
$$

$$
0.18+0.35+0.68=1.21
$$

$0.56+0.25+0.68=1.49$

$0.66+0+0.68=1.34$

