

School of Electrical Engineering

Korea University

Data Structures and Algorithms

- Algorithm Design Techniques -

2014-02-05 Weiss, Data Structures & Alg's 1

2

Algorithm Design

• So far, we focused on the efficient
implementation of algorithms
– Actual data structures ignored

– The programmer is in charge

• Shift to the design of algorithms

– Five common types of algorithms to solve
problems

– At least one of them works for many problems

3

Algorithm Design Types

1. Greedy Algorithms

2. Divide and Conquer

3. Dynamic Programming

4. Randomized Algorithms

5. Backtracking Algorithms

4

Greedy Algorithms

• Work in phases.

• In each phase, a decision is made that appears
to be good, ignoring future consequences

• Take local optimum now, hoping that it is equal
to the global optimum.

– If this is the case, the algorithm is correct

– Otherwise, it produced a suboptimal solution

• Simple greedy algorithms for approximate
answers.

• More complicated algorithms for exact answer

• Dijkstra’s, Prim’s, and Kruskal’s algorithms

• Coin-changing problem

– To make change in U.S. currency, repeatedly
dispense the largest denomination

 (Ex) 17.61 dollars

 one ten-dollar bill

 one five-dollar bill

 two one-dollar bills

 two quarters, one dime, one penny

 → minimize the number of bills and coins

Greedy Algorithms: Examples

2014-02-05 Weiss, Data Structures & Alg's 5

Input:

• Jobs j1, j2, …, jN, all with known running
times t1, t2, …, tN, respectively.

• A single processor

Goal:

• A best schedule to minimize the average
completion time of jobs

• Assuming non-preemptive scheduling

A Simple Scheduling Problem

2014-02-05 Weiss, Data Structures & Alg's 6

Example: Four jobs

2014-02-05 Weiss, Data Structures & Alg's 7

Figure 10.2 Schedule #1

Average completion time
= (15 + 23 + 26 + 36) / 4
= 100 / 4
= 25

Example: Four jobs

2014-02-05 Weiss, Data Structures & Alg's 8

Figure 10.3 Schedule #2 (optimal)

Average completion time
= (3 + 11 + 21 + 36) / 4
= 71 / 4
= 17.75

Example: Four jobs

2014-02-05 Weiss, Data Structures & Alg's 9

Input:

• Jobs j1, j2, …, jN, all with known running
times t1, t2, …, tN, respectively.

• A number P of processors

Goal:

• A best schedule to minimize the average
completion time of jobs

• Assuming non-preemptive scheduling

The Multiprocessor Case

2014-02-05 Weiss, Data Structures & Alg's 10

Example

2014-02-05 Weiss, Data Structures & Alg's 11

Fig 10.5 An optimal solution

P1

P2

P3

 Mean completion time

 = (3+5+6+13+16+20+28+34+40) / 9

 = 165 / 9 = 18.33

Example

2014-02-05 Weiss, Data Structures & Alg's 12

Fig 10.6 A second optimal solution

P1

P2

P3

 Mean completion time

 = (3+5+6+14+15+20+30+34+38) / 9

 = 165 / 9 = 18.33

Final completion time

2014-02-05 Weiss, Data Structures & Alg's 13

• What if we are only interested in when the last
job finishes: final completion time

• In the previous two schedules, these completion
times are 40 and 38.

• In the next schedule,

 the final completion time is 34. However,

 its total completion time is 168.

• Generally, total completion time and final
completion time do not go together.

Final completion time

2014-02-05 Weiss, Data Structures & Alg's 14

Fig 10.7 Minimizing final completion time

P1

P2

P3

 Mean completion time

= 168 / 9 = 18.66

• Known as file compression

• The normal ASCII character set consists of
roughly 100 printable characters

• 7 bits are required to distinguish them.

• An eighth bit is added as a parity check.

• If the size of the character set is C, then |logC|
bits are needed in a standard encoding

Huffman Codes

2014-02-05 Weiss, Data Structures & Alg's 15

• Suppose that a file contains only a, e, i, s, t,
blanks and newlines with the following frequency:

Example

2014-02-05 Weiss, Data Structures & Alg's 16

58

Fig 10.8 Using a standard coding scheme

• In real life, files can be very large.

• There is usually a big disparity between the
most frequent and least frequent characters.

• Reducing the file size might be preferred in
some cases such as transmitting over a slow
network line.

• Can achieve 25% or more savings on typical
large files

• The general strategy is to use short codes for
frequently occurring characters

Huffman Codes

2014-02-05 Weiss, Data Structures & Alg's 17

• The binary code for the alphabet can be
represented by the binary tree.

Tree Representation

2014-02-05 Weiss, Data Structures & Alg's 18

Fig 10.9 Representation of the original code in a tree

0

0

0 1

1

1

0

Total bits = 174

Tree Representation

2014-02-05 Weiss, Data Structures & Alg's 19

Fig 10.10 A slightly better tree

Total bits = 173

1. The optimal tree should be a full tree: All
nodes either are leaves or have two children

– Otherwise, nodes with only one child could move
up a level.

2. The characters should be placed only at the
leaves: Any sequence of bits can be decoded
unambiguously.

– If a character is contained in a nonleaf node, it
is not possible to guarantee that the decoding
will be unambiguous.

Observations

2014-02-05 Weiss, Data Structures & Alg's 20

Optimal prefix code

2014-02-05 Weiss, Data Structures & Alg's 21

• Prefix code: No character code is a prefix of
another character code.

Fig 10.11 Optimal prefix code

Total bits = 146
0

0

0

1

1

1

0

0

Optimal prefix code

2014-02-05 Weiss, Data Structures & Alg's 22

58

Fig 10.12 Optimal prefix code

• How the coding tree is constructed?

• By Huffman in 1952.

• The coding system is called as Huffman code

• Algorithm sketch: Given a forest of C single
node trees-one for each character. The weight
of a tree is equal to the sum of the frequencies
of its leaves. C-1 times, select the two trees, T1
and T2, of smallest weight, breaking ties
arbitrarily, and form a new tree with subtrees
T1and T2

Huffman Codes

2014-02-05 Weiss, Data Structures & Alg's 23

Example (1/6)

2014-02-05 Weiss, Data Structures & Alg's 24

Example (2/6)

2014-02-05 Weiss, Data Structures & Alg's 25

Example (3/6)

2014-02-05 Weiss, Data Structures & Alg's 26

Example (4/6)

2014-02-05 Weiss, Data Structures & Alg's 27

Example (5/6)

2014-02-05 Weiss, Data Structures & Alg's 28

Example (6/6)

2014-02-05 Weiss, Data Structures & Alg's 29

30

Extended Binary Tree

• Augment binary tree with a special “square”
node at every place there is a null link: external
node

• Every binary tree with n nodes has n+1 null links.

• Every binary tree with n nodes has n+1 external
nodes.

• External (Internal) path length E(I)of a binary

tree is the sum of the lengths of the paths from
the root to all external (internal) nodes

31

Extended Binary Tree

external node

internal node
I = 0 + 1 + 1 + 2 + 3 = 7

E = 2 + 2 + 2 + 3 + 4 + 4 = 17

32

Properties

• The internal and external path lengths I and E of
a binary tree with n internal nodes are related by
the formula E = I +2n.

• It follows that binary trees with the maximum E
also have maximum I.

• Question: Over all binary trees with n internal
nodes, what is the maximum and minimum
possible values for I ?

• The worst case is when the tree is

 I = ∑ i = n*(n-1) / 2
i=0

n-1

33

Properties

• For minimum I, put as many internal nodes
as close to the root as possible.

 0 + 2 * 1 + 4 * 2 + 8 * 3 + ...

 → ∑ |log k| = O(n*logn)

• One such example: Complete binary tree

1

n

34

Weighted External Path Length

• From a set of n +1 positive weights q1,q2,...,
qn+1, each of the n +1 external nodes in a
binary tree is associated with one of the weights.

• Weighted External Path Length

 WE = ∑ qi * ki

 where ki is the distance from the root node to
the external node with weight qi

1

n+1

35

Example

2

5

15

4

2 4 5 15

WE = 2*3 +4*3+5*2+15*1

 = 43

WE = 2*2 +4*2+5*2+15*2

 = 52

36

Application

• An optimal set of codes for messages M1,...,
Mn+1 to transmit the corresponding messages.

• At the receiving end, the code will be decoded
using a decode tree.

• A decode tree is a binary tree in which external
nodes represent messages

• The binary bits in the codes determine the
branching needed at each level of the decode
tree to reach the correct external node.

37

Decode tree

• Codes for messages

 M1 : 0 0 0

 M2 : 0 0 1

 M3 : 0 1

 M4 : 1

• The cost of decoding a code word
is proportional to the number of
bits in the code

• Is equal to the distance of the
corresponding external node from
the root node.

M1

M3

M4

M2

0

1

1 0

0

1

Huffman codes

38

Problem Formalism

• Assume qi is the relative frequency with which
message Mi will be transmitted, then the
expected decode time is

 T = ∑ qi * di

 where di is the distance of the external node
for the message Mi from the root node

• The expected decode time is minimized by
choosing code words resulting in a decode tree
with minimal weighted external path length

1

n+1

39

Algorithm

procedure HUFFMAN (L, n) {

 //L is a list of n single node binary trees

 for i = 1 to n-1 do {

 GETNODE(T); //create a new binary tree by

 LCHILD(T) ← LEAST(L); //combining the trees with

 RCHILD(T) ← LEAST(L); //the two smallest weights

 WT(T) ← WT(LCHILD(T)) + WT(RCHILD(T));

 INSERT (L, T)

 }

}

40

Example

q1 = 2, q2 = 3, q3 = 5, q4 = 7, q5 = 9, and q6 = 13

3 2

5
10

5

2

5

3

7

16

9 10

5

2

5

3

23

13

Approximate Bin Packing

2014-02-05 Weiss, Data Structures & Alg's 41

• Solve the bin packing problem

• Run quickly but will not necessarily produce
optimal solutions

• The solutions are not too far from optimal

Approximate Bin Packing

2014-02-05 Weiss, Data Structures & Alg's 42

• Input

 N items of size s1, s2, …, sN where 0<si≤ 1

• Goal

 Pack the items in the fewest no. of bins.

Optimal Packing

2014-02-05 Weiss, Data Structures & Alg's 43

• 7 items with sizes 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

Fig 10.20 Optimal packing

1

• Two versions

– On-line bin packing : each item must be placed
in a bin before the next item can be processed
and the decision can’t be changed

– Off-line bin packing: it is not necessary to do
anything until all the input has been read

Bin Packing Algorithm

2014-02-05 Weiss, Data Structures & Alg's 44

• An on-line algorithm cannot always give an
optimal solution.

• Theorem: There are inputs that force any
on-line bin packing algorithm to use at least
4/3 the optimal number of bins.

• Three simple algorithms that guarantee that
the number of bins used is no more than
twice optimal.

On-line Algorithms

2014-02-05 Weiss, Data Structures & Alg's 45

• Probably the simplest algorithm

• When processing any item, check whether it fits
in the same bin as the last item.

– If it does, it is placed there

– Otherwise, a new bin is created.

Next Fit

2014-02-05 Weiss, Data Structures & Alg's 46

Next fit

2014-02-05 Weiss, Data Structures & Alg's 47

Fig 10.21 Using Next fit

• 7 items with sizes 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

• (Theorem10.2) Let M be the optimal number of
bins required to pack a list I of items. Then next
fit never uses more than 2M bins. There exist
sequences such that next fit uses 2M – 2 bins.

Next Fit

2014-02-05 Weiss, Data Structures & Alg's 48

Example for Theorem 10.2

2014-02-05 Weiss, Data Structures & Alg's 49

Fig 10.22 Optimal packing for 0.5, 2/N, 0.5, 2/N,…
 where N is divisible by 4

Example for Theorem 10.2

2014-02-05 Weiss, Data Structures & Alg's 50

Fig 10.23 Next fit packing for 0.5, 2/N, 0.5, 2/N,…

• To scan the bins in order and place the new
item in the first bin that is large enough to
hold it.

• A new bin is created only when the results
of previous placements have left no other
alternative.

• Processing each item by scanning down
the list of bins sequentially, which would
take O (N 2)

First Fit

2014-02-05 Weiss, Data Structures & Alg's 51

First Fit

2014-02-05 Weiss, Data Structures & Alg's 52

Fig 10.24 Using First fit (4 bins)

• Items with sizes 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

(Theorem 10.3)

Let M be the optimal number of bins required to
pack a list I of items. Then first fit never uses
more than [17/10* N] bins

(Ex) The input consists of 6M items of size 1/7+e,
followed by 6M items of size 1/3+e, followed by
6M items of size ½+e. One simple packing places
one item of each size in a bin and requires 6M
bins.

First Fit

2014-02-05 Weiss, Data Structures & Alg's 53

First Fit: Worst Case

2014-02-05 Weiss, Data Structures & Alg's 54

Fig 10.25 A case where FF uses 10M
bins instead of 6M

Best Fit

2014-02-05 Weiss, Data Structures & Alg's 55

• Instead of placing a new item in the fist spot
that is found, it is placed in the tightest spot
among all bins.

• Even though we make a more educated choice
of bins, the generic bad cases are the same

• Best fit is never more than roughly 1.7 times as
bad as optimal.

Best Fit

2014-02-05 Weiss, Data Structures & Alg's 56

 • Items with sizes 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

Fig 10.26 Best Fit

• Can view the entire item list before producing
an answer.

• All the on-line algorithms have difficulty in
packing the large items, especially when they
occur later in the input.

• This can be solved by sorting the items and
placing the largest items first.

• We can then apply first fit or best fit, yielding
first fit decreasing and best fit decreasing,
respectively.

Off-line Algorithms

2014-02-05 Weiss, Data Structures & Alg's 57

First Fit Decreasing

2014-02-05 Weiss, Data Structures & Alg's 58

• Items with sizes 0.8, 0.7, 0.5, 0.4, 0.3, 0.2, 0.1

• Optimal, but not true in general.

• A problem that can be mathematically
expressed recursively can also be expressed as
a recursive algorithm.

• In case a recursive algorithm is not efficient,
the recursive algorithm can be rewritten as a
non-recursive algorithm that systematically
records the answers to the subproblems in a
table.

• Dynamic programming makes use of this
approach.

Dynamic Programming

2014-02-05 Weiss, Data Structures & Alg's 59

Inefficient Fibonacci Algorithm

2014-02-05 Weiss, Data Structures & Alg's 60

Linear Fibonacci Algorithm

2014-02-05 Weiss, Data Structures & Alg's 61

• The recursive algorithm is slow due to repeated
function calls

Recursive algorithm

2014-02-05 Weiss, Data Structures & Alg's 62

FN-3 3 times / FN-4 5 times / FN-5 8 times

63

Binary Search Tree

• A binary search tree T is a binary tree; either
it is empty or each node in the tree contains
an identifier and:

1. all identifiers in the left subtree of T are less
than the identifier in the root node T;

2. all identifiers in the right subtree of T are greater
than the identifier in the root node T;

3. the left and right subtrees of T are also binary
search trees.

64

Two Examples

if

loop

read

while for

if

while loop

read for

Which one is more desirable in terms of search?

65

Algorithm

procedure SEARCH(T, X, i) {

// search binary search tree T for X

 i ← T;

 while i ≠ 0 do {

 case {

 :X < IDENT(i): k ← LCHILD(i) //search left tree

 :X = IDENT(i): return

 :X > IDENT(i): i ← RCHILD(i) //search right tree

 }

 }

}

• Input: a list of words, w1, w2,…, wN, and
fixed probabilities p1, p2,…, pN of their

occurrence.

• Output: A binary search tree that minimizes
the expected total access time or total
number of comparisons required.

• Hence, the tree should minimize

Optimal Binary Search Tree

2014-02-05 Weiss, Data Structures & Alg's 66

 T = ∑ pi * (1 + di)

 where di is the depth of word wi in the tree

1

 n

Sample Input

2014-02-05 Weiss, Data Structures & Alg's 67

Possible BST #1

2014-02-05 Weiss, Data Structures & Alg's 68

• Use a greedy approach where the word with the
highest probability was placed at the root.

if

a two

am

and the

egg

Possible BST #1

2014-02-05 Weiss, Data Structures & Alg's 69

Possible BST #2

2014-02-05 Weiss, Data Structures & Alg's 70

• Perfectly balanced
search tree.

Possible BST #3

2014-02-05 Weiss, Data Structures & Alg's 71

Comparison

2014-02-05 Weiss, Data Structures & Alg's 72

Structure of Optimal BST

2014-02-05 Weiss, Data Structures & Alg's 73

• Place sorted words wLeft, wLeft+1,…, wi,…,
wRight-1, wRight into a binary search tree.

CLeft, Right = min { pi + CLeft, i-1 + Ci+1, Right

 + ∑ pj + ∑ pj }

Cost Formula

2014-02-05 Weiss, Data Structures & Alg's 74

j=Left

 i-1

j=i+1

 Right

 = min { CLeft, i-1 + Ci+1, Right + ∑ pj }
j=Left

 Right

Left≤i≤Right

Left≤i≤Right

• For each subrange of words starting from a single
word, the algorithm produces the cost and root of
the optimal BST as in the following table.

Computation for the sample input

2014-02-05 Weiss, Data Structures & Alg's 75

Computation of table entry for am..if

2014-02-05 Weiss, Data Structures & Alg's 76

