Data Structures and Algorithms

- Algorithm Design Techniques -

School of Electrical Engineering Korea University

Algorithm Design

- So far, we focused on the efficient implementation of algorithms
 - Actual data structures ignored
 - The programmer is in charge
- Shift to the design of algorithms
 - Five common types of algorithms to solve problems
 - At least one of them works for many problems

Algorithm Design Types

- 1. Greedy Algorithms
- 2. Divide and Conquer
- 3. Dynamic Programming
- 4. Randomized Algorithms
- 5. Backtracking Algorithms

Greedy Algorithms

- Work in phases.
- In each phase, a decision is made that appears to be good, ignoring future consequences
- Take local optimum now, hoping that it is equal to the global optimum.
 - If this is the case, the algorithm is correct
 - Otherwise, it produced a suboptimal solution
- Simple greedy algorithms for approximate answers.
- More complicated algorithms for exact answer

Greedy Algorithms: Examples

- Dijkstra's, Prim's, and Kruskal's algorithms
- Coin-changing problem
 - To make change in U.S. currency, repeatedly dispense the largest denomination
 - (Ex) 17.61 dollars
 - one ten-dollar bill
 - one five-dollar bill
 - two one-dollar bills
 - two quarters, one dime, one penny
 - \rightarrow minimize the number of bills and coins

A Simple Scheduling Problem

Input:

- Jobs j_1, j_2, \dots, j_N , all with known running times t_1, t_2, \dots, t_N , respectively.
- A single processor

Goal:

- A best schedule to minimize the average completion time of jobs
- Assuming non-preemptive scheduling

Example: Four jobs

Example: Four jobs

Example: Four jobs

- The second one is arranged by shortest job first, which always yields an optimal schedule.
- Generally, the total cost C of the schedule is defined by the following equation:

$$C = \sum_{k=1}^{n} (N - k + 1) t_{i_k}$$
$$C = (N+1) \sum_{k=1}^{n} t_{i_k} - \sum_{k=1}^{n} k * t_{i_k}$$

- The first sum is independent of the job ordering.
- The second sum affects the total cost.

The Multiprocessor Case

Input:

- Jobs j_1, j_2, \dots, j_N , all with known running times t_1, t_2, \dots, t_N , respectively.
- A number P of processors

Goal:

- A best schedule to minimize the average completion time of jobs
- Assuming non-preemptive scheduling

Example

Example

Final completion time

- What if we are only interested in when the last job finishes: final completion time
- In the previous two schedules, these completion times are 40 and 38.
- In the next schedule, the final completion time is 34. However, its total completion time is 168.
- Generally, total completion time and final completion time do not go together.

Final completion time

Huffman Codes

- Known as file compression
- The normal ASCII character set consists of roughly 100 printable characters
- 7 bits are required to distinguish them.
- An eighth bit is added as a parity check.
- If the size of the character set is C, then |logC|
 bits are needed in a standard encoding

Example

 Suppose that a file contains only a, e, i, s, t, blanks and newlines with the following frequency:

Character	Code	Frequency	Total Bits
а	000	10	30
е	001	15	45
i	010	12	36
S	011	3	9
t	100	4	12
space	101	13	39
newline	110	1	3
Total		58	174

Fig 10.8 Using a standard coding scheme

Huffman Codes

- In real life, files can be very large.
- There is usually a big disparity between the most frequent and least frequent characters.
- Reducing the file size might be preferred in some cases such as transmitting over a slow network line.
- Can achieve 25% or more savings on typical large files
- The general strategy is to use short codes for frequently occurring characters

Tree Representation

• The binary code for the alphabet can be represented by the binary tree.

Fig 10.9 Representation of the original code in a tree

Observations

- 1. The optimal tree should be a full tree: All nodes either are leaves or have two children
 - Otherwise, nodes with only one child could move up a level.
- 2. The characters should be placed only at the leaves: Any sequence of bits can be decoded unambiguously.
 - If a character is contained in a nonleaf node, it is not possible to guarantee that the decoding will be unambiguous.

Optimal prefix code

• Prefix code: No character code is a prefix of another character code.

Optimal prefix code

Character	Code	Frequency	Total Bits
а	001	10	30
е	01	15	30
i	10	12	24
S	00000	3	15
t	0001	4	16
space	11	13	26
newline	00001	1	5
Total		58	146

Fig 10.12 Optimal prefix code

Huffman Codes

- How the coding tree is constructed?
- By Huffman in 1952.
- The coding system is called as Huffman code
- Algorithm sketch: Given a forest of C single node trees-one for each character. The weight of a tree is equal to the sum of the frequencies of its leaves. C-1 times, select the two trees, T₁ and T₂, of smallest weight, breaking ties arbitrarily, and form a new tree with subtrees T₁and T₂

Extended Binary Tree

- Augment binary tree with a special "square" node at every place there is a null link: external node
- Every binary tree with n nodes has n+1 null links.
- Every binary tree with n nodes has n+1 external nodes.
- External (Internal) path length E(I) of a binary tree is the sum of the lengths of the paths from the root to all external (internal) nodes

Extended Binary Tree

Properties

- The internal and external path lengths *I* and *E* of a binary tree with *n* internal nodes are related by the formula E = I + 2n.
- It follows that binary trees with the maximum *E* also have maximum *I*.
- Question: Over all binary trees with *n* internal nodes, what is the maximum and minimum possible values for *I*?
- The worst case is when the tree is $I = \sum_{i=0}^{n-1} i = n * (n-1) / 2$

Properties

• For minimum *I*, put as many internal nodes as close to the root as possible.

$$0 + 2 * 1 + 4 * 2 + 8 * 3 + ...$$

$$\rightarrow \sum_{n=1}^{n} |\log k| = O(n * \log n)$$

• One such example: Complete binary tree

Weighted External Path Length

- From a set of n+1 positive weights q₁,q₂,..., q_{n+1}, each of the n+1 external nodes in a binary tree is associated with one of the weights.
- Weighted External Path Length

$$WE = \sum_{i=1}^{n+1} q_i * k_i$$

where k_i is the distance from the root node to the external node with weight q_i

Application

- An optimal set of codes for messages M₁,..., M_{n+1} to transmit the corresponding messages.
- At the receiving end, the code will be decoded using a decode tree.
- A decode tree is a binary tree in which external nodes represent messages
- The binary bits in the codes determine the branching needed at each level of the decode tree to reach the correct external node.

Decode tree

M₄

 M_3

 M_2

- The cost of decoding a code word is proportional to the number of bits in the code
- Is equal to the distance of the corresponding external node from the root node.

0

M₁

Problem Formalism

 Assume q_i is the relative frequency with which message M_i will be transmitted, then the expected decode time is

$$T = \sum_{i=1}^{n+1} q_i * d_i$$

where d_i is the distance of the external node for the message M_i from the root node

• The expected decode time is minimized by choosing code words resulting in a decode tree with minimal weighted external path length

Algorithm

```
procedure HUFFMAN (L. n) {
  //L is a list of n single node binary trees
  for i = 1 to n-1 do {
     GETNODE(T); //create a new binary tree by
     LCHILD(T) \leftarrow LEAST(L); //combining the trees with
     RCHILD(T) \leftarrow LEAST(L); //the two smallest weights
     WT(T) \leftarrow WT(LCHILD(T)) + WT(RCHILD(T));
     INSERT (L, T)
```

Example

$$q_1 = 2$$
, $q_2 = 3$, $q_3 = 5$, $q_4 = 7$, $q_5 = 9$, and $q_6 = 13$

Approximate Bin Packing

- Solve the bin packing problem
- Run quickly but will not necessarily produce optimal solutions
- The solutions are not too far from optimal

Approximate Bin Packing

Input

N items of size s_1, s_2, \dots, s_N where $0 < s_i \le 1$

Goal

Pack the items in the fewest no. of bins.

Optimal Packing

• 7 items with sizes 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

Bin Packing Algorithm

- Two versions
 - On-line bin packing : each item must be placed in a bin before the next item can be processed and the decision can't be changed
 - Off-line bin packing: it is not necessary to do anything until all the input has been read

On-line Algorithms

- An on-line algorithm cannot always give an optimal solution.
- Theorem: There are inputs that force any on-line bin packing algorithm to use at least 4/3 the optimal number of bins.
- Three simple algorithms that guarantee that the number of bins used is no more than twice optimal.

Next Fit

- Probably the simplest algorithm
- When processing any item, check whether it fits in the same bin as the last item.
 - If it does, it is placed there
 - Otherwise, a new bin is created.

Next fit

• 7 items with sizes 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

Next Fit

• (Theorem10.2) Let M be the optimal number of bins required to pack a list I of items. Then next fit never uses more than 2M bins. There exist sequences such that next fit uses 2M - 2 bins.

Example for Theorem 10.2

Fig 10.22 Optimal packing for 0.5, 2/N, 0.5, 2/N, ... where N is divisible by 4

Example for Theorem 10.2

First Fit

- To scan the bins in order and place the new item in the first bin that is large enough to hold it.
- A new bin is created only when the results of previous placements have left no other alternative.
- Processing each item by scanning down the list of bins sequentially, which would take $O(N^2)$

First Fit

• Items with sizes 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

First Fit

(Theorem 10.3)

Let *M* be the optimal number of bins required to pack a list *I* of items. Then first fit never uses more than $[{}^{17}/{}_{10}*N]$ bins

(Ex) The input consists of 6M items of size 1/7+e, followed by 6M items of size 1/3+e, followed by 6M items of size $\frac{1}{2}+e$. One simple packing places one item of each size in a bin and requires 6M bins.

First Fit: Worst Case

Best Fit

- Instead of placing a new item in the fist spot that is found, it is placed in the tightest spot among all bins.
- Even though we make a more educated choice of bins, the generic bad cases are the same
- Best fit is never more than roughly 1.7 times as bad as optimal.

Best Fit

• Items with sizes 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

Off-line Algorithms

- Can view the entire item list before producing an answer.
- All the on-line algorithms have difficulty in packing the large items, especially when they occur later in the input.
- This can be solved by sorting the items and placing the largest items first.
- We can then apply first fit or best fit, yielding <u>first fit decreasing</u> and best fit decreasing, respectively.

First Fit Decreasing

• Items with sizes 0.8, 0.7, 0.5, 0.4, 0.3, 0.2, 0.1

Dynamic Programming

- A problem that can be mathematically expressed recursively can also be expressed as a recursive algorithm.
- In case a recursive algorithm is not efficient, the recursive algorithm can be rewritten as a non-recursive algorithm that systematically records the answers to the subproblems in a table.
- Dynamic programming makes use of this approach.

Inefficient Fibonacci Algorithm

```
/**
 1
 2
      * Compute Fibonacci numbers as described in Chapter 1.
3
      */
 4
     int fib( int n )
 5
 6
         if( n <= 1 )
 7
             return 1;
 8
         else
             return fib(n - 1) + fib(n - 2);
 9
10
```

Linear Fibonacci Algorithm

```
int fibonacci( int n )
 4
5
 6
         if( n <= 1 )
 7
             return 1;
8
 9
         int last = 1;
10
         int nextToLast = 1;
11
        int answer = 1;
12
         for( int i = 2; i <= n; i++ )
13
         ł
14
             answer = last + nextToLast;
15
             nextToLast = last;
16
             last = answer;
17
18
        return answer;
19
     ł
```

Recursive algorithm

 The recursive algorithm is slow due to repeated function calls

Binary Search Tree

- A binary search tree T is a binary tree; either it is empty or each node in the tree contains an identifier and:
 - 1. all identifiers in the left subtree of T are less than the identifier in the root node T;
 - 2. all identifiers in the right subtree of T are greater than the identifier in the root node T;
 - 3. the left and right subtrees of T are also binary search trees.

Algorithm

```
procedure SEARCH(T, X, i) {
// search binary search tree T for X
  i \leftarrow T;
   while i \neq 0 do {
     case {
        :X < IDENT(i): k \leftarrow LCHILD(i) //search left tree
        :X = IDENT(i): return
        :X > IDENT(i): i \leftarrow \text{RCHILD}(i) //search right tree
```

Optimal Binary Search Tree

- Input: a list of words, w₁, w₂,..., w_N, and fixed probabilities p₁, p₂,..., p_N of their occurrence.
- Output: A binary search tree that minimizes the expected total access time or total number of comparisons required.
- Hence, the tree should minimize

$$T = \sum_{i=1}^{n} p_i * (1 + d_i)$$

where d_i is the depth of word w_i in the tree

Sample Input

Word	Probability
a	0.22
am	0.18
and	0.20
egg	0.05
if	0.25
the	0.02
two	0.08

• Use a greedy approach where the word with the highest probability was placed at the root.

Weiss, Data Structures & Alg's

	1	Input	Tree #1			
(if)	Word w _i	Probability p _i	Acc Once	ess Cost Sequence		
	a	0.22	2	0.44		
(a) (tv	am	0.18	4	0.72		
(and) (the)	and	0.20	3	0.60		
	egg	0.05	4	0.20		
(am) (egg)	if	0.25	1	0.25		
\bigcirc	the	0.02	3	0.06		
	two	0.08	2	0.16		
	Totals	1.00		2.43		
	Iotals	1.00		2.43		

 Perfectly balanced search tree.]	Input	Tree #2			
\frown	Word w _i	Probability <i>p</i> i	Acc Once	ess Cost Sequence		
(egg)	а	0.22	3	0.66		
(am) (the)	am	0.18	2	0.36		
	and	0.20	3	0.60		
(a) (and) (if) (two)	egg	0.05	1	0.05		
(a) (and) (if) (two)	if	0.25	3	0.75		
	the	0.02	2	0.04		
	two	0.08	3	0.24		
	Totals	1.00		2.70		

]	Input	Tree #3			
an	a if		Word w _i	Probability <i>p</i> i	Acc Once	ess Cost Sequence		
		а	0.22	2	0.44			
(a)	(a) (if)	f	am	0.18	3	0.54		
			and	0.20	1	0.20		
am	(am) (egg)	(two)	two	egg	0.05	3	0.15	
		(the)	if	0.25	2	0.50		
			the	0.02	4	0.08		
			two	0.08	3	0.24		
			Totals	1.00		2.15		

Weiss, Data Structures & Alg's

Comparison

Input		T	ree #1	T	ree #2	Tree #3			
Word Probability w _i p _i		Acc Once	ess Cost Sequence	Acc Once	ess Cost Sequence	Access Cost Once Sequence			
а	0.22	2	0.44	3	3 0.66		0.44		
am	0.18	4	4 0.72		2 0.36		0.54		
and	0.20	3 0.60		3	3 0.60		0.20		
egg	0.05	4	0.20	1	0.05	3	0.15		
if	0.25	1	0.25	3	0.75	2	0.50		
the	0.02	3	0.06	2	0.04	4	0.08		
two	0.08	2	0.16	3	0.24	3	0.24		
Totals	1.00		2.43		2.70		2.15		

Structure of Optimal BST

• Place sorted words w_{Left} , w_{Left+1} , \cdots , w_i , \cdots , $w_{Right-1}$, w_{Right} into a binary search tree.

$$C_{Left, Right} = \min_{Left \le i \le Right} \left\{ p_i + C_{Left, i-1} + C_{i+1, Right} + \sum_{j=Left}^{i-1} p_j + \sum_{j=i+1}^{Right} p_j \right\}$$
Right

$$= \min_{Left \le i \le Right} \{ C_{Left, i-1} + C_{i+1, Right} + \sum_{j=Left}^{nght} p_j \}$$

• For each subrange of words starting from a single word, the algorithm produces the cost and root of the optimal BST as in the following table.

Computation for the sample input

	Left=1		Left=2		Left=3		Left=4		Left=5		Left=6		Left=7	
Iteration=1	a.	.a	amam		andand		eggegg		ifif		thethe		twotwo	
	.22	.22 a .18 am		.20	and	.05	egg	.25	if	.02	the	.08	two	
Iteration=2	aa	am	amand		andegg		eggif		ifthe		thetwo			
neration-2	.58	a	.56	and	.30	and	.35	if	.29	if	.12	two		
Iteration=3	Iteration-2 aand		amegg andif		lif	eggthe iftwo		wo			-			
noration-5	1.02	am	.66 and		.80	if	.39	if	.47	if				
Iteration=4	aegg		amif		andthe		eggtwo							
noration-+	1.17	am	m 1.21 and		.84	if	.57	if						
Iteration=5	a	if amthe		.the	andtwo									
noration-5	1.83	and	1.27	and	1.02	if								
Iteration=6	athe		am	two										
neration=0	1.89	and	1.53	1.53 and										
Iteration=7	at	wo												
neranon-7	2.15	and												

Weiss, Data Structures & Alg's