Data Structures and Algorithms

- Set -

School of Electrical Engineering Korea University

Equivalence Relations

- A relation \mathbf{R} is defined on a set S if for every pair of elements $(\boldsymbol{a}, \boldsymbol{b})$ where $\boldsymbol{a}, \boldsymbol{b} \in \mathrm{S}, \boldsymbol{a} \mathrm{R} \boldsymbol{b}$ is either true or false.
- If $\boldsymbol{a} \boldsymbol{R} \boldsymbol{b}$ is true, then \boldsymbol{a} is related to b.
- An equivalence relation is a relation \mathbf{R} that satisfies three properties:

1. (Reflexive) $\boldsymbol{a} \boldsymbol{R} \boldsymbol{a}$, for all $\boldsymbol{a} \in S$.
2. (Symmetric) $\boldsymbol{a} \mathbf{R} \boldsymbol{b}$ if and only if $\boldsymbol{b} \boldsymbol{R} \boldsymbol{a}$.
3. (Transitive) $\boldsymbol{a} \boldsymbol{R} \boldsymbol{b}$ and $\boldsymbol{b} \mathbf{R} \boldsymbol{c}$ implies that $\boldsymbol{a} \boldsymbol{R} \boldsymbol{c}$

Equivalence Relations

- Example
- \leq relationship: reflexive, transitive, but not symmetric
- Electrical connectivity: reflexive, transitive, symmetric
- Membership relationship if two cities are in the same country

Example

- Given an equivalence relation \sim, it is easy to decide if $a \sim b$ when the relation is stored as a two-dimensional array of Booleans.
- What if the relation is implicit?
\rightarrow want to be able to infer this quickly
(Ex) Suppose an equivalence relation ' \sim ' over the set $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$ with the following relation instances: $a_{1} \sim a_{2}, a_{3} \sim a_{4}, a_{5} \sim a_{1}, a_{4} \sim a_{2}$
then $a_{1} \sim a_{4}$?

Equivalence class

- The equivalence class of an element $a \in S$ is the subset of \mathbf{S} that contains all the elements that are related to a
- The equivalence classes form a partition of \mathbf{S} : every member of \mathbf{S} appears in exactly one equivalence class
- $\boldsymbol{a} \sim \boldsymbol{b}$ can be checked by checking whether \boldsymbol{a} and b are in the same equivalence class

Equivalence problem

- The input is initially a set of N sets, each with one element.
- Each set has a different element, so that $\mathrm{S}_{\mathrm{i}} \cap$ $S_{j}=\varnothing$; Disjoint
- Two permissible operations:
- Find returns the name of the set containing a given element (namely, equivalence class)
- Union merges the two equivalence classes containing a and b

Equivalence Problem

- Do not perform any operations comparing the relative values of elements, but merely require knowledge of their location
-> all the elements have been numbered sequentially from 1 to N
- The name of the set returned by Find is actually fairly arbitrary. What matters is that Find $(a)=$ Find (b) if and only if a and b are in the same set

Equivalence Problem

- These operations are important in many graph theory problems
- Two strategies
- The Find instruction can be executed in constant worst-case time
- The Union instruction can be executed in constant worst-case time
- Both cannot be done simultaneously in constant worst-case time

Data Structure

- It is not required that a Find operation return any specific name.
- Rather, Finds on two elements return the same answer if and only if they are in the same set
- One idea is to use tree since each element in the tree has the same root
- Represent a set by a tree, a set of sets by a forest.

Tree representation

- The name of a set is given by the node at the root.
- A parent pointer is used
- Since only the name of the parent is required, this tree is stored implicitly in an array.
- The tree is stored implicitly in an array
- each entry $P[i]$ in the array represents the parent of element i
- If i is a root, then $P[i]=0$

Implicit Array Representation

Fig. 8.1 Eight elements, initially in different sets

- Implicit array representation -

Implicit Array Representation

Union(5, 6)
\uparrow
1

0	0	0	0	0	5	0	0
1	2	3	4	5	6	7	8

Implicit Array Representation

Union(7, 8)

Implicit Array Representation

Union $(5,7)$

Disjoint set type declaration

typedef int DisjSet[NumSets + 1]
typedef int SetType;
typedef int ElementType;

void Initialize(DisjSet S);
void SetUnion(DisjSet S, SetType R1, SetType R2);
SetType Find(ElementType X, DisjSet S);

Initialization routine

```
void
Initialize (DisjSet S )
{
    int i;
    for (i=NumSets ; i> 0; i-- )
    S[ i ] = 0;
}
```


Union routine (not the best way)

/* Assumes R1 and R2 are roots */
/* union is a C keyword, so this routine is */
/* named SetUnion */
void
SetUnion (DisjSet S, SetType R1, SetType R2)
\{

$$
S[R 2]=R 1 ;
$$

\}

Find routine

SetType
Find (ElementType X, DisjSet S)
\{
if $(S[X]<=0)$
return X;
else
return Find ($\mathrm{S}[\mathrm{X}], \mathrm{S}$)
\}

Tree representation: Example

- For 10 elements numbered 1 through 10 ,

$$
\begin{aligned}
& S_{1}=\{1,7,8,9\} \\
& S_{2}=\{2,5,10\} \\
& S_{3}=\{3,4,6\}
\end{aligned}
$$

Operations: Find

- Find(4) $\rightarrow S_{3}$
- Find(9) $\rightarrow S_{1}$

Operations: Union

Set name

Union Strategy

Union $(5,7)$

0	0	0	0	0	5	5	7
1	2	3	4	5	6	7	8

Union by previous rule

Union by Size

Worst case tree for $\mathrm{N}=16$

- If Unions are done by size, the depth of any node is never more than log N.

Performance

12
3
4
n-1
n

- $U(2,1), F(1), U(3,2), F(1), U(4,3), F(1), \ldots, F(1), U(n, n-1)$

Performance

- All the $\mathrm{n}-1$ unions take $\mathrm{O}(\mathrm{n})$: each one takes a constant time.
- The total time needed to process $\mathrm{n}-2$ finds is

$$
\mathrm{O}\left(\Sigma_{i}^{\mathrm{n}-2} i\right)=\mathrm{O}\left(\mathrm{n}^{2}\right)
$$

- How to avoid the worst case behavior
\rightarrow Use weighting rule

Weighting Rule for UNION (i, j):

If the number of nodes in (the height of) tree i is less than the number in (the height of) tree \boldsymbol{j}, then make \boldsymbol{j} the parent of i, otherwise make i the parent of j.
\square

Weighting rules

- Using tree height
- Make the shallow tree a subtree of the deeper tree
- Using tree size
- Depending on the number of nodes in the tree
- How to store the number of nodes or height in a tree?
\rightarrow Use count field in the root of every tree

Ordinary Array Representation

Using Weight Rules

Union-by-size

-1	-1	-1	5	-5	5	5	7
1	2	3	4	5	6	7	8

Union-by-height

0	0	0	5	-2	5	5	7
1	2	3	4	5	6	7	8

Union by Height Algorithm

void SetUnion (DisjSet S, SetType R1, SetType R2) \{
if (S[R2] < S[R1]) /* R2 is deeper set */ $S[R 1]=R 2 ;$
/* Make R2 new root */
else
\{
if (S[R1] == S[R2]) /* Same height, */ S[R1]--; /* so update */ $S[R 2]=R 1$;
\}
$\}$

Path Expression

- When we put all set sets on a queue and repeatedly dequeue the first two sets and enqueue their union

Path Compression

- If there are many more Finds than Unions, the running time is worse than that of the quickfind algorithm.
- The only way to speed up the algorithm without reworking the data structure entirely is to do something clever on the Find operation
- Useful when more Finds are required
- Performed during the Find operation
- Every node on the path from X to the root has its parent changed to the root for $\operatorname{Find}(X)$

Path Compression on Find(15)

Revised FIND algorithm

SetType Find (ElementType X, DisjSet S) \{

$$
\begin{aligned}
& \text { if }(S[X]<=0) \\
& \text { return } X ; \\
& \text { else }
\end{aligned}
$$

return Find($S[X], S) / /$ Original version
\}

Lemma

(Lemma 1) Let T be a tree with n nodes created as a result of algorithm UNION. No node in T has level greater $\left|\log _{2} n\right|+1$

- As a result of lemma 1, the maximum time to process a find is at most $\mathrm{O}(\log n)$ if there are n elements in a tree.
- Further improvement is possible using the Collapsing Rule.
- Collapsing Rule: If j is a node on the path from i to its root and $\operatorname{PARENT}(\lambda) \neq \operatorname{root}(\lambda)$, then set $\operatorname{PARENT}($) $) \leftarrow \operatorname{root}($ ($)$

$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

