
Operating System

Chapter 5. Concurrency:
Mutual Exclusion and Synchronization

Lynn Choi
School of Electrical Engineering

Table 5.1 Some Key Terms Related to Concurrency

Concurrency: Key Terminologies

 Source: Pearson

Atomic Operation
 “Atomic” means

 Indivisible, uninterruptable
 Must be performed atomically, which means either “success” or “failure”

− Success: successfully change the system state
− Failure: no effect on the system state

 Atomic operation
 A function or action implemented as a single instruction or as a sequence of

instructions that appears to be indivisible
− No other processes can see an intermediate state

 Can be implemented by hardware or by software
 HW-level atomic operations

− Test-and-set, fetch-and-add, compare-and-swap, load-link/store-conditional
 SW-level solutions

− Running a group of instructions in a critical section

 Atomicity is generally enforced by mutual exclusion
 To guarantee isolation from concurrent processes

Mutual Exclusion & Critical Section

 Mutual exclusion
 The problem of ensuring that only one process or thread must be in a

critical section at the same time

 Critical section
 A piece of code that has an access to a shared resource

HW Support for Mutual Exclusion
 Disable interrupt on an entry to a critical section

 The simplest approach
− No context switching guarantees mutual exclusion

 Problem: only for a uniprocessor
− Disabling interrupt does not affect other cores/processors
− Other cores are free to run any code

 Can enter a critical section for the same shared resource
 Can execute the same code, disabling interrupts at different times for each core

HW Support for Mutual Exclusion
 Special machine instructions

 Test-and-set, fetch-and-add, compare-and-swap etc.
− Access to a shared memory location is exclusive and atomic
− Test-and-set is supported by most processor families

 x86, IA64, SPARC, IBM z series, etc.

 These are atomic operations supported by the machine instructions
 Can be used to implement semaphores and other SW solutions
 Can also be used for multiprocessors
 Problem

− Busy waiting
 Other process or thread accessing the same memory location must wait and retry

until the previous access is complete
− Deadlock and starvation can also happen

SW Schemes for Mutual Exclusion
 Semaphores

− A process or thread must obtain a “semaphore” to enter the critical
section and release it on the exit

 Monitor
 Message Passing

Semaphore
 Semaphore

 A variable that provides a simple abstraction for controlling access to a
common resource in a programming environment

 The value of the semaphore variable can be changed by only 2 operations
− V operation (also known as “signal”)

 Increment the semaphore
− P operation (also known as “wait”)

 Decrement the semaphore
− The value of the semaphore S is usually the number of units of the resource that

are currently available.

 Type of semaphores
 Binary semaphore

− Have a value of 0 or 1
 0 (locked, unavailable)
 1 (unlocked, unavailable)

 Counting semaphore
− Can have an arbitrary resource count

Race Condition
 Race condition occurs

 When two or more processes/threads access shared data and they try to
change it at the same time. Because thread/process scheduling algorithm
can switch between threads, you don’t know which thread will access the
shared data first. In this situation, both threads are ‘racing’ to access/change
the data.

 Operations upon shared data are critical sections that must be mutually
exclusive in order to avoid harmful collision between processes or threads.
− Regarded as a programming error
− Difficult to locate this kind of programming errors as results are nondeterministic

and not reproducible

 Example
 Two processes attempt to

remove two nodes
simultaneously from a singly-
linked list
− Only one node is removed

instead of two.

http://en.wikipedia.org/wiki/File:Mutual_exclusion_example_with_linked_list.png�

Deadlock & Starvation
 Deadlock

 A situation where two or more competing processes are waiting for the other to
release a resource

 Starvation (Infinite Postponement)

 A situation where the progress of a process is indefinitely postponed by the
scheduler

 Livelock
 A situation where two or more processes continuously change their states

without making progress

 “Compare and Swap” instruction
 A compare is made between a memory value and a test value

int compare_and_swap (int *word, int testval, int
newval)

{

 int oldval;

 oldval = *word

 if (oldval == testval) *word = newval;

 return oldval;

}

 Some version of this instruction is available on nearly all processor
families (x86, IA64, SPARC, IBM z series, etc.)

Atomicity is guaranteed by HW

Compare and Swap Instruction

Critical Section using Compare and Swap

 Source: Pearson

 “Exchange” instruction
 Exchange the content of a register with that of a memory location.

void exchange (int *register, int *memory)

{

 int temp;

 temp = *memory;

 *memory = *register;

 *register = temp;

}

 x86 and IA-64 support XCHG instruction

Exchange Instruction

Critical Section using Exchange

 Source: Pearson

Special Instructions: +/−
 Advantages

 Applicable to any number of processes on either a single processor or multiple
processors sharing main memory

 Simple and easy to verify
 It can be used to support multiple critical sections; each critical section can be

defined by its own variable

 Disadvantages
 Busy-waiting
 Starvation is possible when a process leaves a critical section and more than one

process is waiting
− The selection of a waiting process is arbitrary

 Deadlock is possible
− Process P1 executes compare and swap and enter its critical section
− P1 is then interrupted and give control to P2 who has higher priority.
− P2 will be denied access due to mutual exclusion and go to busy waiting loop.
− P1 will never be dispatched since it has lower priority than P2.

Semaphore
 A variable that has an integer value upon which only

three operations are defined
1) May be initialized to a nonnegative integer value

2) The semWait (P) operation decrements the value

3) The semSignal (V) operation increments the value

 There is no way to inspect or manipulate semaphores
other than these three operation

Semaphore Primitives

 Source: Pearson

Binary Semaphore Primitives

 Source: Pearson

Strong/Weak Semaphores
 A queue is used to hold processes waiting on the

semaphore

 Strong semaphore
 The process that has been blocked the longest is released from the queue

first (FIFO)

 Weak semaphore
 The order in which processes are removed from the queue is not specified

Example of Semaphore Mechanism

Wait

Wait

Signal

Wait/Wait/Wait

Signal

 Source: Pearson

Mutual Exclusion

 Source: Pearson

Shared Data Protected by a Semaphore

 Source: Pearson

Producer/Consumer Problem
 General Situation

 One or more producers
− Produce data item and insert it in a buffer

 One consumer
− Delete it from the buffer and consume the data item

 Only one producer or consumer may access the buffer at any time

 The problem
 Ensure that the producer can’t add data into a full buffer
 Consumer can’t remove data from an empty buffer

Buffer Structure

 Source: Pearson

Figure 5.9 An Incorrect Solution to the Infinite-Buffer Producer/Consumer Problem Using Binary Semaphores

Incorrect Solution

 Source: Pearson

Possible Scenario

 Source: Pearson

Correct Solution

 Source: Pearson

Scenario
Producer Consumer s n

1 1 0

2 Wait(s) 0 0

3 Signal(s) 1 0

4 Signal(n) 1 1

5 Wait(n) 1 0

6 Wait(s) 0 0

7 Signal(s) 1 0

8 Wait(s) 0 0

9 Signal(s) 1 0

10 Signal(n) 1 1

11 Wait(n) 1 0

12 Wait(s) 0 0

13 Signal(s) 1 0

14 Wait(s) 0 0

15 Signal(s) 1 0

16 Signal(n) 1 1

17 Wait(n) 1 0

18 Wait(s) 0 0

19 Signal(s) 1 0
 Source: Pearson

Implementation of Semaphores

 Source: Pearson

Monitor
 Motivation

 Semaphore
− It is not easy to produce a correct program using semaphores
− semWait and semSignal operations may be scattered throughout a program and it

is not easy to see the overall effect of these operations

 Monitor
 Programming language construct that provides equivalent functionality to that

of semaphores and is easier to control
 Implemented in a number of programming languages

− Including Concurrent Pascal, Pascal-Plus, Modula-2, Modula-3, and Java
 Monitor consists of one or more procedures, an initialization code, and local

data
− Local data variables are accessible only by the monitor’s procedures and not by

any external procedure
− Process enters the monitor by invoking one of its procedures
− Only one process may be executing in the monitor at a time

Synchronization with Monitor
 Condition variable

 Monitor supports synchronization by the use of condition variables that are
contained within the monitor and accessible only within the monitor

 Condition variables are operated by two functions
− cwait(c): suspend the execution of the calling process on condition c
− csignal(c): resume the execution of a process blocked on the same

condition
 If there are so such processes, the signal is lost (do nothing)

Structure of a Monitor

 Source: Pearson

Problem Solution Using a Monitor

Figure 5.16 A Solution to the Bounded-Buffer Producer/Consumer Problem Using a Monitor

 Source: Pearson

Message Passing
 When processes interact with one another, the

following actions must be satisfied by the system
 Mutual exclusion
 Synchronization
 Communication

 Message passing is one approach to provide these
functions and
 Works with shared memory and distributed memory multiprocessors,

uniprocessors, and distributed systems

 The actual function is normally provided in the form of
a pair of primitives
 send (destination, message)

− A process sends information in the form of a message to another process
designated by a destination

 receive (source, message)
− A process receives information by executing the receive primitive, indicating

the source and the message

Synchronization
 Communication of a message between two processes

implies synchronization between the two
 The receiver cannot receive a message until it has been sent by another process

 Both sender and receiver can be blocking or nonblocking
 When a send primitive is executed, there are two possibilities

− Either the sending process is blocked until the message is received, or it is not
 When a receive primitive is executed there arealso two possibilities

− If a message has previously been sent the message is received and the execution
continues

− If there is no waiting message the process is blocked until a message arrives or the
process continues to execute, abandoning the attempt to receive

Blocking/Nonblocking Send/Receive
 Blocking send, blocking receive

 Both sender and receiver are blocked until the message is delivered
 Sometimes referred to as a rendezvous
 Allows for tight synchronization between processes

 Nonblocking send, blocking receive
 Sender continues on but receiver is blocked until the requested message arrives
 The most useful combination
 It allows a process to send one or more messages to a variety of destinations as

quickly as possible

 Nonblocking send, nonblocking receive
 Neither party is required to wait

Addressing
 Schemes for specifying processes in send and receive primitives

fall into two categories
 Direct addressing

 Send primitive includes a specific identifier of the destination process
 Receive primitive can be handled in one of two ways

− Explicit addressing
 Require that the process explicitly designate a sending process
 Effective for cooperating concurrent processes

− Implicit addressing
 Source parameter of the receive primitive possesses a value returned when the receive

operation has been performed

 Indirect addressing
 Messages are sent to a shared data structure consisting of queues that can temporarily

hold messages
 Queues are referred to as mailboxes
 One process sends a message to the mailbox and the other process picks up the

message from the mailbox
 Allows for greater flexibility in the use of messages

Indirect Process Communication

 Source: Pearson

General Message Format

 Source: Pearson

Mutual Exclusion

 Source: Pearson

 Producer Consumer with Message

 Source: Pearson

Homework 4
 Exercise 5.2
 Exercise 5.6
 Exercise 5.7
 Due by 10/12

	Operating System��Chapter 5. Concurrency: �Mutual Exclusion and Synchronization
	슬라이드 번호 2
	Atomic Operation
	Mutual Exclusion & Critical Section
	HW Support for Mutual Exclusion
	HW Support for Mutual Exclusion
	SW Schemes for Mutual Exclusion
	Semaphore
	Race Condition
	Deadlock & Starvation
	Compare and Swap Instruction
	Critical Section using Compare and Swap
	Exchange Instruction
	Critical Section using Exchange
	Special Instructions: +/
	Semaphore
	Semaphore Primitives
	슬라이드 번호 18
	Strong/Weak Semaphores
	슬라이드 번호 20
	슬라이드 번호 21
	Shared Data Protected by a Semaphore
	Producer/Consumer Problem
	Buffer Structure
	슬라이드 번호 25
	슬라이드 번호 26
	슬라이드 번호 27
	Scenario
	Implementation of Semaphores
	Monitor
	Synchronization with Monitor
	Structure of a Monitor
	Problem Solution Using a Monitor
	Message Passing
	Synchronization
	Blocking/Nonblocking Send/Receive
	Addressing
	슬라이드 번호 38
	General Message Format
	슬라이드 번호 40
	 Producer Consumer with Message
	Homework 4

