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CPU Performance

a T, (Execution time per program)
= NI * CPlexecution ™ Tcycle

» NI = # of instructions / program (program size)
» CPI = clock cycles / instruction
> Teyee = second / clock cycle (clock cycle time)

Q To increase performance

» Decrease NI (or program size)

— Instruction set architecture (CISC vs. RISC), compilers
» Decrease CPI (or increase IPC)

— Instruction-level parallelism (Superscalar, VLIW)

» Decrease Ty (Or increase clock speed)
— Pipelining, process technology
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Advances in Intel Microprocessors B
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Microprocessor Performance Curve
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ILP Saturation | — Hardware Complexity
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Figure 1: Baseline superscalar model. ’

Q Superscalar hardware is not scalable in terms of issue width!
» Limited instruction fetch bandwidth
» Renaming complexity oc issue width?
» Wakeup & selection logic o< instruction window?
» Bypass logic complexity oc # of FUs?
» Also, on-chip wire delays, # register and memory access ports, etc.

a Higher IPC implies lowering the Clock Speed!
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|LP Saturation Il — Limits of ILP

i

il

Even with a very aggressive superscalar

microarchitecture

v 2K window

v'Max. 64 instruction issues per cycle
v'8K entry tournament predictors
v'2K jump and return predictors
v'256 integer and 256 FP registers

Available ILP is only 3 ~ 6!
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ILP Saturation 111 — Power Inefficiency _..

Q Increasing issue rate is not energy efficient

Hardware complexity & Power
Peak issue rate

Sustained issue rate & Performance

Q Increasing clock rate is also not energy efficient
» Increasing clock rate will increase transistor switching frequency
» Faster clock needs deeper pipeline, but the pipelining overhead grows faster

Q Existing processors already reach the power limit
» 1.6GHz Itanium 2 consumes 130W of power!

» Temperature problem —Pentium power density passes that of a hot plate
("98) and would pass a nuclear reactor in 2005, and a rocket nozzle in 2010.

QO Higher IPC and higher clock speed have been pushed to their limit!
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TLP

Era | - Multithreading

Q Multithreading

» Interleave multiple independent threads into the pipeline every cycle

— Each thread has its own PC, RF, branch prediction structures but shares
Instruction pipelines and backend execution units

» Increase resource utilization & throughput for multiple-issue processors

-4— Time (processor cycles)

R RS

— Improve total system throughput (IPC) at the expense of compromised single

program performance
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TLP Era | - Multithreading

a IBM 8-processor Power 5 with SMT (2 threads per core)

» Run two copies of an application in SMT mode versus single-thread mode
» 23% improvement in SPECintRate and 16% improvement in SPECfpRate
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TLP Era Il - Multicore

a Multicore

» Single-chip multiprocessing
» Easy to design and verify functionally
» Excellent performance/watt £Enotoz:
—Payn = aCL * Vpp* * F i
— Dual core at half clock speed can achieve the same performan e
(throughput) but with only % of the power consumption !

~ Dual core consumes 2 * C * 0.5V * 0.5F = 0.25 CV?F
» Packaging, cooling, reliability
— Power also determines the cost of packaging/cooling.

— Chip temperature must be limited to avoid reliability issue and leakage
power dissipation.

» Improved throughput with minor degradation in single program
performance

— For multiprogramming workloads and multi-threaded applications
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Today’s Microprocessor

Q Intel Core 2 Quad Processor (code name “Yorkfield”)
» Technology

— 45nm process, 820M transistors, 2x107 mm=2dies
— 2.83 GHz, two 64-bit dual-core dies in one MCM package
» Core microarchitecture
— Next generation multi-core microarchitecture introduced in Q1 2006
~ Derived from P6 microarchitecture
— Optimized for multi-cores and lower power consumption

~ Lower clock speeds for lower power but higher performance

~ 1/2 power (up to 65W) but more performance compared to dual-
core Pentium D

~ 14-stage 4-issue out-of-order (OOO) pipeline |
— 64bit Intel architecture (x86-64) |
» 2 unified 6MB L2 Caches
» 1333MHz system bus

Intel Corp. All rights reserved
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Today’s Microprocessor
Q Sun UltraSPARC T2 processor (“Niagara I1”)

» Multithreaded multicore technology
— Eight 1.4 GHz cores, 8 threads per core — total 64 threads
— 65nm process, 1831 pin BGA, 503M transistors, 84W power consumption
» Core microarchitecture
— Two issue 8-stage instruction pipelines & pipelined FPU per core
» 4MB L2 - 8 banks, 64 FB DIMMs, 60+ GB/s memory bandwidth
» Security coprocessor per core and dual 10GB Ethernet, PCI Express
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’ C T
Today’s Microprocessor e

a Cortex A-9 MPCore
» ARMV7 ISA HERERERENEEEEEEEEEEEEEe

» Support complex OS
and multiuser
applications

» 2-issue superscalar 8-
stage OOO pipeline

» FPU supports both SP
and DP operations

» NEON SIMD media
processing engine

» MPCore technology

that can support 1 ~ 4
cores

ARM CoreSight™ Multicore Debug and Trace Architecture
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a ldea

» Double the number of cores on a chip with each silicon generatign
» 1000 cores will be possible with 30nm technology
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Future CPU Microarchitecture - MANYCORE | "&%

a Architecture

» Core architecture
— Should be the most efficient in MIPS/watt and MIPS/silicon.

— Modestly pipelined (8~14 stages) in-order pipeline s | BN

» System architecture .l
— Heterogeneous vs. homogeneous MP

~ Heterogeneous in terms of functionality |

~ Heterogeneous in terms of performance
¢+ Amdahl’'s Law

— Shared vs. distributed memory MP -
~ Shared memory multicore
+ Most of existing multicores

* Preserve the programming paradigm via binary compatibility and
cache coherence

~ Distributed memory multicores
+ More scalable hardware and suitable for manycore architectures
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Future CPU Microarchitecture | - MANYCORE::

s 1 SRR

a Issues

» On-chip interconnects
— Buses and crossbar will not be scalable to 1000 cores!

— Packet-switched point-to-point interconnects
~ Ring (IBM Cell), 2D/3D mesh/torus (RAW) networks
~ Can provide scalable bandwidth. But, how about latency?

» Cache coherence
— Bus-based snooping protocols cannot be used!
— Directory-based protocols for up to 100 cores

— More simplified and flexible coherence protocols will be needed to leverage the
improved bandwidth and low latency.
~ Caches can be adapted between private and shared configurations.
~ More direct control over the memory hierarchy. Or, software-managed caches

» Off-chip pin bandwidth
— Manycores will unleash a much higher numbers of MIPS in a single chip.

— More demand on 10 pin bandwidth
~ Need to achieve 100 GB/s ~ 1TB/s memory bandwidth

— More demand on DRAM out of total system silicon
R RS Computer System Laboratory




Future CPU Microarchitecture | - MANYCOREs

il

Q Projection
» Pin IO bandwidth cannot sustain the memory demands of manycores
» Multicores may work from 2 to 8 processors on a chip
» Diminishing returns as 16 or 32 processors are realized!
— Just as returns fell with ILP beyond 4~6 issue now available
» But for applications with high TLP, manycore will be a good design choice
— Network processors, Intel’s RMS (Recognition, Mining, Synthesis)
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Future CPU Architecture 11 — Multiple SoC

Q ldea — System on Chip!

» Integrate main memory on chip
» Much higher memory bandwidth and reduced memory access latencies

aQ Memory hierarchy issue
» For memory expansion, off-chip DRAMs may need to be provided
— This implies multiple levels of DRAM in the memory hierarchy
— On-chip DRAMSs can be used as a cache for the off-chip DRAM
» On-chip memory is divided into SRAMs and DRAMs
— Should we use SRAMs for caches? DRAM -

Q Multiple systems on chip -

» Single monolithic DRAM shared by multiple cores - - -
» Distributed DRAM blocks across multiple cores
DRAM -

DRAM DRAM
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Intel Terascale processor

a Features

» 80 3.13 GHz processor cores, 1.01 TFLOPS at 1.0V, 62W, 100M transistors
» 3D stacked memory

» Mesh interconnects — provides 80GB/s bandwidth

a Challenges
» On-die power dissipation
» Off-chip memory bandwidth

» Cache hierarchy design and coherence Intel Corp. All rights reserved
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Intel Terascale processor
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Technology 65nm CMOS Process
Interconnect 1 poly, 8 metal (Cu)
Transistors 100 Million
Die Area 275mm?2
Tile area 3mm?2
Package 1248 pin LGA, 14 layers,

falL /O Area N 343 signal pins
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Trend - Change of Wisdoms

Q 1. Power is free, but transistors are expensive.

> “Power wall”: Power is expensive, but transistors are “free”.
a 2. Regarding power, the only concern is dynamic power.

» For desktops/servers, static power due to leakage can be 40% of total power.
a 3. Can reveal more ILP via compilers/arch innovation.

» “ILP wall”: There are diminishing returns on finding more ILP.

Q 4. Multiply is slow, but load and store is fast.

> “Memory wall”: Load and store is slow, but multiply is fast. 200 clocks to access
DRAM, but FP multiplies may take only 4 clock cycles.

Q 5. Uniprocessor performance doubles every 18 months.

» Power Wall + Memory Wall + ILP Wall: The doubling of uniprocessor performance
may now take 5 years.

Q 6. Don’t bother parallelizing your application, as you can just wait and run it
on a faster sequential computer.
» It will be a very long wait for a faster sequential computer.

a 7. Increasing clock frequency is the primary method of improving processor
performance.

» Increasing parallelism is the primary method of improving processor performance.
R RS Computer System Laboratory



