UDP

User Datagram Protocol

- Transport layer protocol with low overhead
- UDP has the datagram model
 No stream
- 3 Uses of UDP
 - Non-unicast
 - Real-time
 - Short transactions

UDP

- Does little more than what IP does
 Delivery between interface and process
 - Port number is the "address" it uses
- UDP format (Fig. 10-2)

 Simple: 2 port numbers, length (header+payload), checksum (usual Internet checksum)

UDP header

- Port number
 - Associated with a process (running program)
 - If no association is found, ICMP Port Unreachable is returned to the source by UDP
 - In TCP, it is Reset flag that is returned, not the ICMP error
 - Required to find the process
 - Remember ICMP error carries the starting part of the dead IP datagram? Now you know why.

UDP header

- Length field is not really unique
 - Can infer the UDP length from the two lengths in the IP header
 - Total length 4*header length
 - Both layer headers are accessible because up to transport layer the kernel implements

UDP checksum

- Covers entire UDP datagram including the header
 - Optional in IPv4, mandatory in IPv6
 - If not used, 0x0000
 - If used but computed to be 0x0000, change to 0xffff
 - Both are zeros in 1's complement notation
 - Either both ends use it or both don't use it
 - Currently on by default

UDP checksum

- Uses "pseudo-header" in checksum computation
 - Also checks if delivered to the right IP address etc.

UDP and IP fragmentation

• UDP simply attaches the 8B header to whatever comes down from the user

- And make it into a "datagram"

- Doesn't perform any segmentation

So IP sometimes gets to fragment the datagram that contains UDP
 – Fig. 10-9