Fourier Spectral Method (1)

v (4 Sy, Py o=l p] 5T,
R]] ‘ ~ f 1]
=) e
I \NJ N S A U\

Fast Fourier Transformation

A fast Fourier transformation (FFT) is an algorithm to
compute the discrete Fourier transformation (DFT) and
Its inverse.

« There are many different FFT algorithm, and most
commonly used one is Cooley-Tukey algorithm.

« Computing the DFT of N points in the naive way,
using the definition, takes O(N?) arithmetical
operations.

Fast Fourier Transformation

« By Cooley-Tukey algorithm, we can compute the same
result with only O(N log N).

It Is based on a divide and conquer that recursively
breaks down a DFT of any composite size N = N;N,
into many smaller DFTs of size N; and N..

« We also use FFT in multidimensional domain and
order of computation is still O(N log N).

Heat Equation

« For an example of application, we consider the heat
equation in [0, L] :

Ut = Ugy
 Usually, we use the periodic boundary condition (BC)
for the Fourier transformation. However, we can also

use the Dirichlet or Neumann BC using sine or cosine
Fourier transformation, respectively.

« Here, we use periodic BC which is a general case.

Heat Equation

« The DFT and its inverse (iDFT) of u is given by

2m(p —1)

where M is the number of grid points and ¢, = 7

« We plug this into the heat equation.

Heat Equation

« By using forward difference in time, the heat equation
IS written as

n+1 un 82

At oz

(% n

and applying the Fourier transformation in both side,

—{—1

M Z Ap wcmgp _ M Z(zé-p)Q AN w:mép

Z gp An zccmﬁp

Heat Equation

« By orthogonality, we can cancel out the same terms
and summation :

~n—+1

up — U

At

D 2
P AN
= —&p Uy

i = i (1 - At

« And by the inverse transformation, we can reconstruct
u"*l from un.

cle: clf; clear all: I .Uk T T T

M =100: % = lingpace(0, 2+pi, M): dx = »(2) - x(1); L = =lend) - wil1);:
u=sin(x); T =10.05; dt = 0.5+dx+dx; nt = round{T/dt);

0.04
for iter = 1:nt
uh = O+u:
for ii =1:100
for jj = 1:100 v
uhfii) = uh(ii) + uljideexp(=1isx{jjle2epi=(ii-11/1); 0.0z
end
end
nuh = uh+0; 0
for ii = 1:100
nuhCii) = uh(ii)s{1-dt+2+pi+{ii-1)/L);
end
nu = O+u; 002
for ii = 1:100 £
for ji = 1:100
nuliid = nulij) + nuhfiideexpllisnlijde2epis(ii-10/L0;
end 004}
end
nu = real{nu)/M:
plotix, nud
pause(0.01); -D.DED ; é é
U= nu;

Enﬂ =

Code

M= 100: % = linspace(D, 2+pi, M): dw = x(2) - (1) L = wlend) - x(1); ° At f| rst th ree |IneS, there

U =sintx); T =0.058; dt = 0.5+dx+d%; nt = round{TAdt);

are basic settings such

uh = D+u;

as the number of grid

for ji =1:100

» Wh(ii) = uh(ii) + ullidsexp(=1ix(]])2epi+(1i-1]/L); pO|ntS, doma|n size,

EI'IEI . . . ° °
Initial condition and total

nubh = uh=+0; .
for ii = 1:100

nuh(ii) = uhiiil={1-dt+2epi={ii-13/L); tlme
and
nu = O+u;
for ii = 1:100

« The first loop in the

nuCijd = nuCif) + nuh(ii)sexp(lisn(jj)e2epi«lii-11/L);

loop-by-'iter’ is the
v Fourier transformation.

plotix, nul
pause(0.01);

u = nu;
end

Code

M= 100; % = inspace(D, 2¢pi, M): dx = %(2) - x(1); L = w(end) — x(1); o The Second |Oop iS to

U =sintx); T =0.058; dt = 0.5+dx+d%; nt = round{TAdt);

for iter = T:nt update ,&n—i—l o

uh = D+u;
for i = 1:100
for ji = 1:100
hiii) = uhiii) + uliilsenpl-Tisx(ij)«2epi«(ii-1)/L);

e The third loop is the
iInverse Fourier

for i = 1:100

nuh(i i) = uhiii)e(1-dts2epietii-1)/L); tranSformatlon

end

nu = O+us
for i = 1:100
for jj = 1:100 o
W) = M)+ ouhCisexnCl o4 s2pia (1100 e Last three lines are for

end

plot the figure and

nu = real{nu)/M;

potts,) updating for next time
pause(0.01);
step.

u = nu;
end|

