
Operating System

Chapter 9. Uniprocessor Scheduling

Lynn Choi
School of Electrical Engineering

Processor Scheduling
 Scheduling

 Assign system resource (CPU time, IO device, etc.) to processes/threads to
meet system objectives, such as response time, turnaround time, throughput,
or fairness
− In practice, these goals often conflict

 Three types of scheduling
 Long-term scheduling (admission scheduler)

− Decide which jobs/processes to be admitted to the ready queue
− Admission to the set of currently executing processes

 Mid-term scheduling (swapper)
− Remove processes from main memory and place them on secondary memory, or

vice versa
− Swap in/out processes

 Short-term scheduling (CPU scheduler or dispatcher)
− Decide which of the ready, in-memory processes to be executed by the processor

following a clock interrupt, IO interrupt, or OS call
− Execute most frequently

Scheduling and Process State Transitions

 Source: Pearson

Nesting of Scheduling Functions

 Source: Pearson

Queuing Diagram

 Source: Pearson

Long-Term Scheduler
 Determines which programs are admitted to the

system for processing
 Once admitted a user program becomes a process

 Controls the degree of multiprogramming
 The more processes that are created, the smaller the percentage of

time that each process can be executed
− May limit the degree of multiprogramming to provide satisfactory

service to the current set of processes
− Or, may increase the degree of multiprogramming if CPU is idle too long

 Which jobs to admit next can be
 First come, first served (FCFS), or
 Priority, expected execution time, I/O requirements

 For interactive programs in a time-sharing system
 OS will accept all authorized comers until the system is saturated

Short-Term Scheduling Criteria
 The main objective of short-term scheduling is to

allocate processor time to optimize system behaviour
 Can be categorized into two dimensions

 User-oriented criteria
− Relate to the behaviour of the system as perceived by the individual user

or process (such as response time in an interactive system)
− Important on virtually all systems

 System-oriented criteria
− Focus on efficient utilization of the processor such as throughput
− Generally of minor importance on single-user systems

 Performance-related criteria
− Quantitative and can be measured
− Example: response time, throughput

 Not performance-related criteria
− Qualitative and hard to measure
− Example: predictability

Scheduling Criteria

 Source: Pearson

Priority Queuing
Ready queue with the highest priority

Ready queue with the lowest priority

May suffer from starvation!

 Source: Pearson

Alternative Scheduling Policies

 Source: Pearson

Selection Function
 Determines which process, among ready processes, is

selected next for execution
 May be based on priority, resource requirements, or

the execution characteristics of the process
 If based on execution characteristics then important

quantities are
 w = time spent in system so far, waiting
 e = time spent in execution so far
 s = total service time required by the process, including e; generally,

this quantity must be estimated or supplied by the user

Decision Mode
 Specifies the instants in time at which the selection

function is exercised
 Two categories

 Nonpreemptive
− Once a process is in the running state, it will continue until it terminates

or blocks itself for I/O
 Preemptive

− Currently running process may be interrupted and moved to ready state
by the OS

− Preemption may occur when new process arrives, on an interrupt that
places a blocked process in the Ready queue, or periodically based on a
clock interrupt

Process Scheduling Example

 Source: Pearson

Comparison of Scheduling Policies

 Source: Pearson

First-Come First-Served (FCFS)
 Simplest scheduling policy
 Also known as first-in-first-out (FIFO)
 When the current process ceases to execute, the oldest

process in the Ready queue is selected
 Performs much better for long processes than short ones

 Whenever a short process arrives just after a long one, it waits too long

 Tends to favor CPU-bound processes over IO-bound ones
 When a CPU-bound process is running, all the IO-bound processes must wait

 May result in inefficient use of both CPU and IO devices

 Source: Pearson

Round Robin
 Uses preemption based on a clock
 Also known as time slicing because each process is

given a slice of time before being preempted
 Principal design issue is the length of the time

quantum, or slice, to be used
 Time quantum should be slightly longer than a typical interaction

 Particularly effective in a general-purpose time-
sharing system or transaction processing system

 One drawback: CPU-bound processes receive a
complete quantum while IO-bound ones may not

 Source: Pearson

Effect of Preemption Time Quantum Size

 Source: Pearson

Effect of Preemption Time Quantum Size

 Source: Pearson

Virtual Round Robin (VRR)
 Avoid the unfairness of

IO-bound processes
 When an IO-bound

process is released from
IO block, it is moved to
the auxiliary queue

 Processes in the
auxiliary queue get
preference over those in
the ready queue

 A process dispatched
from the auxiliary queue
runs no longer than a
time quantum minus the
time spent running Source: Pearson

Shortest Process Next (SPN)
 Also called SJF (Shortest Job First)
 Nonpreemptive policy in which the process with the

shortest expected processing time is selected next
 A short process will jump to the head of the queue
 Possibility of starvation for longer processes
 One difficulty is the need to know, or at least estimate,

the required processing time of each process
 If the programmer’s estimate is substantially under

the actual running time, the system may abort the job

 Source: Pearson

Exponential Smoothing Coefficients

 Source: Pearson

Use Of Exponential Averaging

 Source: Pearson

Use Of Exponential Averaging

 Source: Pearson

Shortest Remaining Time (SRT)
 Preemptive version of SPN
 Scheduler always chooses the process that has the

shortest expected remaining time
 The scheduler may preempt the current process when a new process with a

short expected processing time becomes ready

 Risk of starvation for longer processes
 Should give superior turnaround time performance to

SPN because a short job is given immediate
preference to a running longer job

 Source: Pearson

Highest Response Ratio Next (HRRN)
 When the current process completes or is blocked

(non-preemptive policy), choose the next process with
the greatest ratio (normalized turnaround time)

 Attractive because it considers the aging of a process
 While shorter jobs are favored, aging without service

increases the ratio so that a long process will
eventually win the competition against shorter jobs

 Source: Pearson

Feedback Scheduling
 Also known as

multilevel
feedback queue
 Penalize jobs that have

been running longer by
placing these jobs into
lower priority queues

 When a process enters
the system, it is placed
in RQ0. After its first
preemption, it is
demoted to RQ1.

 Short processes will
complete quickly while
long processes may
starve

 To avoid starvation and
long turnaround time,
RQi may be assigned 2i
time units

 Source: Pearson

Feedback Performance

 Source: Pearson

Fair-Share Scheduling
 Scheduling decisions are made based on sets of

processes rather than each individual process
 An individual application may be organized as multiple processes/threads
 From the user perspective, the concern is not how a particular process

performs but rather how his/her application (set of processes) performs

 Each user is assigned a share of the processor
 Objective is to monitor usage to give fewer resources

to users who have had more than their fair share and
more to those who have had less than their fair share

 Scheduling is done on the basis of priority, which
considers the process priority, its recent processor
usage, and the recent processor usage of the group it
belongs.

Fair-Share Scheduler
 CPUj(i) = CPUj(i-1)/2

 CPU utilization by
process j during
interval i

 GCPUk(i) = GCPUk(i-1)/2
 CPU utilization of

group k during interval
i

 Pj(i) = Basei + CPUj(i)/2 +
GCPUk(i)/(4 * Wk)

 Basei : base priority of
process j

 Wk : weight assigned
to group k

 Source: Pearson

Traditional Unix Scheduling
 Used in both SVR3 and 4.3 BSD UNIX

 These systems are primarily targeted at the time-sharing interactive
environment

 Designed to provide good response time for
interactive users while ensuring that low-priority
background jobs do not starve
 Employs multilevel feedback queue using round robin within each of

the priority queues
 If a running process does not block or complete within one second, it

is preempted.
 Priority is based on process type and execution history

Scheduling Formula

Examples of Traditional UNIX Process
Scheduling

 Source: Pearson

Homework 8
 Exercise 9.1
 Exercise 9.3
 Exercise 9.5
 Exercise 9.8
 Exercise 9.13

	Operating System��Chapter 9. Uniprocessor Scheduling
	Processor Scheduling
	Scheduling and Process State Transitions
	Nesting of Scheduling Functions
	Queuing Diagram
	Long-Term Scheduler
	Short-Term Scheduling Criteria
	Scheduling Criteria
	Priority Queuing
	Alternative Scheduling Policies
	Selection Function
	Decision Mode
	Process Scheduling Example
	Comparison of Scheduling Policies
	First-Come First-Served (FCFS)
	Round Robin
	Effect of Preemption Time Quantum Size
	Effect of Preemption Time Quantum Size
	Virtual Round Robin (VRR)
	Shortest Process Next (SPN)
	Exponential Smoothing Coefficients
	Use Of Exponential Averaging
	Use Of Exponential Averaging
	Shortest Remaining Time (SRT)
	Highest Response Ratio Next (HRRN)
	Feedback Scheduling
	Feedback Performance
	Fair-Share Scheduling
	Fair-Share Scheduler
	Traditional Unix Scheduling
	Scheduling Formula
	Examples of Traditional UNIX Process Scheduling
	Homework 8

