
TCP timeout and retransmission
TCP interactive flow algorithms

14강

TCP timeout

• One of the two means of detecting a
packet loss

– ACK not arriving until retransmission timeout
(RTO)

• RTO = avg(RTT)+4*std(RTT)

– Cf. Chevyshef inequality

– Avg RTT is a low-pass filter output of RTT graph

– Standard deviation is not used; actually mean
deviation is used

TCP timeout

• RFC 2988 stipulates that max(1s, RTO)
should be used

• RTO vs. RTT: see Fig. 14-3

Fast Retransmit

• The second means of detecting packet
loss

– 3 consecutive duplicate ACKs

– E.g. 4320, 4320, 4320, 4320  trigger FR

• It’s faster than timeout method

Delayed ACK algorithm

• TCP suppresses ACKs by default

– Uses 200ms timer to suppress

– Waits until a packet in the opposite
direction starts

– It’s because the placeholders for the two
pieces of ACK information (ACK number +
window size) are in the opposite direction
data packet anyway

Delayed ACK algorithm

• If 200ms timer expires while suppressing
ACK, the ACK segment should go

– Such ACK segment has only header (no
body carrying data in the opposite direction)

• If window size (i.e. available receive
socket buffer space) is newly made larger
than 2MSS, suppression should end

– Let the TCP sender know that we can
receive more! Let it send!

Delayed ACK algorithm

• Delayed ACK is on by default

• If you turn it off (e.g. by editing registry
on Windows), all TCP connections will
have Delayed ACK off

• Delayed ACK is to eliminate unnecessary
ACK transmissions on the receiver side of
a data channel

– It runs on either side

Nagle’s algorithm

• This is sender side story

• We do not want to generate “small”
segments

– Small = less than MSS: e.g. 1B, 1459B, etc.

• If a small segment has to be sent, check
if there is any outstanding small segment
unacknowledged yet

– If so, wait until the ACK comes back

Nagle’s algorithm

• Gather bytes in the send socket buffer in
the mean time

• When the ACK for the prior small
segment comes back, carry all the
gathered bytes in one segment

– If more than MSS bytes are gathered in the
send socket buffer, you can always send a
full segment irrespective of Nagle

Zero window ACK and persist
timer

• If the receive socket buffer is full,
window size=0 is sent in the ACK

– This is a special condition, and the TCP
sender notes it; run so called the “persist”
timer

• The only way to break the sender free is
sending an ACK with window size != 0

– Then sender sends some data, gets an ACK,
etc. etc.

Zero window ACK

• But what if the window advertisement ACK
is lost?

– All packets are equal in the Internet; it can die

• The sender is frozen

– As it thinks window size is still 0 as no ACK with
WS!=0 arrives

• The receiver has nothing to send more

– It already sent an ACK; no retransmission of
ACK in TCP

Zero window ACK

• That’s why the sender runs the persist
timer

• If the timer expires, send a “probe”
packet

– Carries at least 1 byte taken from the head
of the send socket buffer (normal data)

– TCP always allows such 1 byte packet to be
send beyond the window

Zero window ACK

• If there is some space in the receive
socket buffer, the probe data will be
received and ACKed

– Then the window opening ACK must have
been lost indeed

– This will break the livelock and set the TCP
running again

• If the situation is the same, the receiver
will send another zero window ACK

Silly Window Syndrome

• It doesn’t mean that SWS is actually
happening in today’s Internet

• SWS means the sender transmits “small”
packets

• Both the sender and the receiver have a
preventive mechanism

– Sender: Nagle

SWS avoidance

• What does receiver do?
– It lies
– It lies about the available receive socket buffer

size
– If it is less than 2MSS, it just says “0”

• Otherwise the sender will get a small opening, and to
fill the opening, it will have to send a small packet

• Note that the receiver mechanism is
unnecessary if the Nagle is working fine at
the sender or vice versa
– We do not trust the other guy…that’s our

philosophy; do you?

Keepalive timer

• Not in the TCP spec

• The server can check if the client is still
there (“half-open” or not?)
– Because half-open only wastes server’s resource

• Sends a “probe”, but this is different from
the probe used in the persist timer
– Probe is an empty packet with an old sequence

number (older than the client is expecting)

– Receiver immediately sends an ACK with a
correct ACK number if it is alive!

