TCP timeout and retransmission
TCP interactive flow algorithms



TCP timeout

* One of the two means of detecting a
packet loss

— ACK not arriving until retransmission timeout
(RTO)

« RTO = avg(RTT)+4*std(RTT)
— Cf. Chevyshef inequality

— Avg RTT is a low-pass filter output of RTT graph

— Standard deviation is not used; actually mean
deviation is used



TCP timeout

« RFC 2988 stipulates that max(1s, RTO)
should be used

* RTO vs. RTT: see Fig. 14-3



Fast Retransmit

» The second means of detecting packet
loss

— 3 consecutive duplicate ACKs
— E.g. 4320, 4320, 4320, 4320 - trigger FR

e It's faster than timeout method



Delayed ACK algorithm

« TCP suppresses ACKs by default
— Uses 200ms timer to suppress

— Waits until a packet in the opposite
direction starts

— It's because the placeholders for the two
pieces of ACK information (ACK number +
window size) are in the opposite direction
data packet anyway



Delayed ACK algorithm

 If 200ms timer expires while suppressing
ACK, the ACK segment should go

— Such ACK segment has only header (no
body carrying data in the opposite direction)

 If window size (i.e. available receive
socket buffer space) is newly made larger
than 2MSS, suppression should end

— Let the TCP sender know that we can
receive more! Let it send!



Delayed ACK algorithm

« Delayed ACK is on by default

e If you turn it off (e.g. by editing registry
on Windows), all TCP connections will
have Delayed ACK off

» Delayed ACK is to eliminate unnecessary
ACK transmissions on the receiver side of
a data channel
— It runs on either side



Nagle's algorithm

 This is sender side story
» We do not want to generate “small”
segments
— Small = less than MSS: e.g. 1B, 1459B, etc.
« If a small segment has to be sent, check

If there is any outstanding small segment
unacknowledged yet

—If so, wait until the ACK comes back



Nagle's algorithm

« Gather bytes in the send socket buffer in
the mean time

« When the ACK for the prior small
segment comes back, carry all the
gathered bytes in one segment
— If more than MSS bytes are gathered in the

send socket buffer, you can always send a
full segment irrespective of Nagle




Zero window ACK and persist
timer

« If the receive socket buffer is full,
window size=0 iIs sent in the ACK

— This is a special condition, and the TCP
sender notes Iit; run so called the “persist”
timer

« The only way to break the sender free is
sending an ACK with window size != 0

— Then sender sends some data, gets an ACK,
etc. etc.



Zero window ACK

 But what if the window advertisement ACK

IS lost?
— All packets are equal in the Internet; it can die

 The sender is frozen
— As it thinks window size is still 0 as no ACK with
WS!=0 arrives
* The receiver has nothing to send more

— It already sent an ACK; no retransmission of
ACK in TCP



Zero window ACK

» That's why the sender runs the persist
timer

« If the timer expires, send a “probe”
packet

— Carries at least 1 byte taken from the head
of the send socket buffer (normal data)

— TCP always allows such 1 byte packet to be
send beyond the window



Zero window ACK

o If there is some space in the receive
socket buffer, the probe data will be
received and ACKed

— Then the window opening ACK must have
been lost indeed

— This will break the livelock and set the TCP
running again
« If the situation is the same, the receiver
will send another zero window ACK



Silly Window Syndrome

* It doesn’'t mean that SWS is actually
happening in today’s Internet

« SWS means the sender transmits “small”
packets

 Both the sender and the receiver have a
preventive mechanism

— Sender: Nagle



SWS avoidance

« What does receiver do?
— It lies

— It lies about the available receive socket buffer
size
— If it is less than 2MSS, it just says “0”

* Otherwise the sender will get a small opening, and to
fill the opening, it will have to send a small packet

 Note that the receiver mechanism is

unnecessary if the Nagle is working fine at
the sender or vice versa

— We do not trust the other guy...that's our
philosophy; do you?



Keepalive timer

* Not in the TCP spec

« The server can check if the client is still
there (“half-open” or not?)
— Because half-open only wastes server's resource

« Sends a “probe”, but this is different from
the probe used in the persist timer

— Probe is an empty packet with an old sequence
number (older than the client is expecting)

— Receiver immediately sends an ACK with a
correct ACK number if it is alive!



