Network Address Translation (NAT)

Why should we know this?

- Because you are using it
 - $\frac{\text{http://www.youtube.com/watch?v=z_jxoczN}}{\text{Wc}} (40:00 \rightarrow)$

It all started with IPv4 address depletion fears

Two-pronged attack
 – IPv6 (long-term solution)

- NAT (short-term solution)
 - But became permanent
 - "NAT is IPv4ever"

NAT

- What's good about it
 Obviates the need for long-term solution
 - If address shortage is the issue
- What's bad about it
 - Can't translate IP addresses and port numbers in the payload of application protocols unless taught so
 - Internet telophony, FTP, ICMP (error), etc.
 - Breaks the end-to-end principle: "middlebox" problem

Traditional NAT

• Basic NAT

– m:n address mapping (m>>n)

- NAPT
 - Can share the same global address
 - Distinction is made by port numbers

Servers behind NAT

- Clients are okay behind NAT
- Servers need globally known address
 - NAT address can be used
 - Port mapping/forwarding
 - Based on the destination port number, NAT forwards the requests from global Internet to an internal server
 - E.g. TCP port 80 \rightarrow Web server behind NAT

NAT traversal

- Pinholes
 - Mapping made at NAT is called "pinhole"
 - Lives during application execution, which created the pinhole
- Hole punching
 - Method that allows two or more systems behind NAT to communicate directly using pinholes
 - E.g. Skype peer-to-peer app

STUN

- Session Traversal Utilities for NAT
- Two objectives
 - Ascertain the "external" IP and port used on a NAT for an application behind it
 - Keep the NAT binding alive
- STUN servers on the global Internet are necessary

STUN

• STUN server echoes back STUN requests

- Uses port 3478 with TCP/UDP
- STUN message format: Fig. 7-8

STUN

Mapped address is the external address being used

- "reflexive transport address"

 XOR-MAPPED-ADDRESS exclusive-OR's the mapped address w/ magic cookie
 – To avoid ALG's unwanted intervention

TURN

- STUN is asking, and getting an answer from, the STUN server
 - STUN server does not do anything more than that
- Traversal Using Relays around NAT extends STUN
- TURN provides a way for two systems behind uncooperative NATs to communicate

TURN

- TURN client uses the "relayed transport address" at the TURN server
 - The client uses the address to communicate with its peer
- Fig. 7-11
- Allocation is made at the TURN server

 Requires authentication, as TURN service involves costly traffic relaying operation

ICE

- Interactive Connectivity Establishment

 A generic facility
- Developed to help UDP-based applications behind a NAT establish connectivity

Uses STUN and TURN

ICE

- Prefers more direction communication
- Priority

– Host transport > server-reflexive > relayed