
Operating System

Chapter 7. Memory Management

Lynn Choi
School of Electrical Engineering

Memory Management
 Terminology

 Requirements – should provide the following functions
 Relocation
 Protection
 Sharing

 Source: Pearson

Relocation, Protection & Sharing
 Relocation

 Programmers typically do not know which other programs will be resident in main
memory at the time of execution of their program

 Active processes need to be swapped in and out of main memory to maximize
processor utilization

 A process may need to be placed in a different area of memory when it is swapped
back

 Protection
 Processes need to acquire (read, write) permission to reference memory locations
 Memory references generated by a process must be checked at run time to check if

they have permissions (access rights)
 Mechanisms that support relocation also support protection

 Sharing
 Allow each process to access to the same copy of a program rather than having its

own separate copy
 Should provide controlled access to shared areas without compromising protection
 Mechanisms that support relocation also support sharing

Addressing Requirement of a Process
 For relocation, OS must know the location of program (instructions, data) as well as

its PCB

 Source: Pearson

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused 0

%esp (stack pointer)

Memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded from the
executable file

Process Image

 Source: Pearson

Logical/Physical Organization
 Main memory is organized as a linear array of bytes

− While this organization closely mirrors the machine HW, it does not correspond
to logical organization (user’s view of memory)

 Logical organization
 Users view programs as a collection of modules

− Modules can be written and compiled independently
− Different protection (read-only, execute-only) are given to different modules
− Module level sharing corresponds to the user’s way of viewing the problem

 Segmentation is the tool that most readily satisfies requirement

 Physical organization
 Computer memory is organized as main memory and secondary memory
 Main memory available for a program may not be sufficient

− Programmer does not know how much space will be available
 Cannot leave the programmer with the responsibility to manage memory
 Overlaying allows various modules to be assigned the same region of

memory

Memory Management
 Memory management techniques involve

 Segmentation, overlaying, and virtual memory, etc.
 We can classify these techniques as

− Memory partitioning – used in old operating systems
− Virtual memory based on paging and segmentation

 Fixed partitioning
 Equal-size partitions

− Any process which fit into the partition can be loaded into any available partition
− Swap out a process if all partitions are full
− Problems

 A program may be too big to fit in a partition
 Program needs to be designed with the use of overlays

 Internal fragmentation
 Wasted space due inside a partition

 Unequal-size partitions
− Can lessen both of the problems

 Large partitions can accommodate programs without overlays
 Small partitions can reduce internal fragmentation

Memory Management Techniques

 Source: Pearson

Equal-size vs Unequal-size Partition

 Source: Pearson

Memory Assignment with Fixed Partitioning

 Disadvantages
 The number of partitions

specified by the system
limits the number of
active processes

 Small jobs will not utilize
partition space efficiently

 Source: Pearson

Dynamic Partitioning
 Dynamic partitioning

 Process is allocated as much memory as it requires
 Partitions are of variable length and of variable numbers
 This technique was used by IBM’s mainframe operating system, OS/MVT

 External fragmentation
 Memory becomes more and more fragmented
 Memory utilization declines

 Compaction
 Technique to overcome external fragmentation
 OS shifts processes so that they are contiguous
 It is a time consuming process, wasting CPU time

Effect of Dynamic Partitioning

 Source: Pearson

Placement Algorithms
 First fit

 Search list from the beginning, choose the first free block that fits
 Can take linear time in total number of blocks (allocated and free)
 (+) Tend to retain large free blocks at the end
 (-) Leave small free blocks at beginning

 Next fit
 Like first-fit, but search the list starting from the end of previous search
 (+) Run faster than the first fit
 (-) Worse memory utilization than the first fit

 Best fit
 Search the list, choose the free block with the closest size that fits
 (+) Keeps fragments small – better memory utilization than the other two
 (-) Will typically run slower – requires an exhaustive search of the heap

Placement Example

 Source: Pearson

Buddy System
 Buddy system

 Use both fixed and dynamic partitioning
 Memory blocks are available of size 2K words, L ≤ K ≤ U, where

− 2L = smallest size block that is allocated
− 2U = largest size block that is allocated

 If a request of size s is made, the entire block that fits s is allocated.
 The buddy system maintains a list of holes (unallocated blocks)

− It may split a hole in half to create two buddies of half size
− It may coalesce two holes into a single block of double size

Buddy System Example

 Source: Pearson

Tree Representation

 Source: Pearson

Addresses
 Logical address

 Address starts from 0

 Relative address
 An example of logical address
 Address is expressed as a location relative to some known point

 Physical address
 The actual address in main memory

Hardware Support for Relocation

 Source: Pearson

Paging
 Paging

 Partition memory into equal fixed-size chunks (page frames)
 Process image is divided into the same fixed-size chunks (pages)

 Page table
 Contains the mapping between pages and frames

− For each page in the process, PTE (page table entry) contains the frame
number

 Maintained by operating system for each process
 CPU must access the page table to generate a physical address for the

current process

Assignment of Processes to Frames

 Source: Pearson

Page Tables

 Source: Pearson

Logical Address

 Source: Pearson

Logical to Physical Address Translation

 Source: Pearson

Segmentation
 Segmentation

 A program is divided into variable-length segments
 The address consists of segment number + offset
 No internal fragmentation
 But, external fragmentation

− Similar to dynamic partitioning

Logical to Physical Address Translation

 Source: Pearson

Homework 6
 Exercise 7.2
 Exercise 7.6
 Exercise 7.9
 Exercise 7.15

	Operating System��Chapter 7. Memory Management
	Memory Management
	Relocation, Protection & Sharing
	Addressing Requirement of a Process
	Process Image
	Logical/Physical Organization
	Memory Management
	Memory Management Techniques
	Equal-size vs Unequal-size Partition
	Memory Assignment with Fixed Partitioning
	Dynamic Partitioning
	Effect of Dynamic Partitioning
	Placement Algorithms
	Placement Example
	Buddy System
	Buddy System Example
	Tree Representation
	Addresses
	Hardware Support for Relocation
	Paging
	Assignment of Processes to Frames
	Page Tables
	Logical Address
	Logical to Physical Address Translation
	Segmentation
	Logical to Physical Address Translation
	Homework 6

