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Memory Management 
 Terminology 

 
 
 
 
 
 
 

 Requirements – should provide the following functions 
 Relocation 
 Protection 
 Sharing 
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Relocation, Protection & Sharing 
 Relocation 

 Programmers typically do not know which other programs will be resident in main 
memory at the time of execution of their program 

 Active processes need to be swapped in and out of main memory to maximize 
processor utilization 

 A process may need to be placed in a different area of memory when it is swapped 
back 

 Protection 
 Processes need to acquire (read, write) permission to reference memory locations  
 Memory references generated by a process must be checked at run time  to check if 

they have permissions (access rights) 
 Mechanisms that support relocation also support protection 

 Sharing 
 Allow each process to access to the same copy of a program rather than having its 

own separate copy 
 Should provide controlled access to shared areas without compromising protection 
 Mechanisms that support relocation also support sharing 



Addressing Requirement of a Process 
 For relocation, OS must know the location of program (instructions, data) as well as 

its PCB 
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Logical/Physical Organization 
 Main memory is organized as a linear array of bytes 

− While this organization closely mirrors the machine HW, it does not correspond 
to logical organization (user’s view of memory) 

 Logical organization 
 Users view programs as a collection of modules 

− Modules can be written and compiled independently 
− Different protection (read-only, execute-only) are given to different modules 
− Module level sharing corresponds to the user’s way of viewing the problem 

 Segmentation is the tool that most readily satisfies requirement 

 Physical organization 
 Computer memory is organized as main memory and secondary memory 
 Main memory available for a program may not be sufficient 

− Programmer does not know how much space will be available 
 Cannot leave the programmer with the responsibility to manage memory 
 Overlaying allows various modules to be assigned the same region of 

memory 



Memory Management 
 Memory management techniques involve 

 Segmentation, overlaying, and virtual memory, etc. 
 We can classify these techniques as 

− Memory partitioning – used in old operating systems 
− Virtual memory based on paging and segmentation 

 Fixed partitioning 
 Equal-size partitions 

− Any process which fit into the partition can be loaded into any available partition 
− Swap out a process if all partitions are full 
− Problems 

 A program may be too big to fit in a partition 
 Program needs to be designed with the use of overlays 

 Internal fragmentation 
 Wasted space due inside a partition 

 Unequal-size partitions 
− Can lessen both of the problems 

 Large partitions can accommodate programs without overlays 
 Small partitions can reduce internal fragmentation 



Memory Management Techniques 
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Equal-size vs Unequal-size Partition 
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Memory Assignment with Fixed Partitioning 

 Disadvantages 
 The number of partitions 

specified by the system 
limits the number of 
active processes 
 
 
 
 

 Small jobs will not utilize 
partition space efficiently 
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Dynamic Partitioning 
 Dynamic partitioning 

 Process is allocated as much memory as it requires 
 Partitions are of variable length and of variable numbers 
 This technique was used by IBM’s mainframe operating system, OS/MVT 

 External fragmentation 
 Memory becomes more and more fragmented 
 Memory utilization declines 

 Compaction 
 Technique to overcome external fragmentation 
 OS shifts processes so that they are contiguous 
 It is a time consuming process, wasting CPU time 

 
 
 
 
 
 
 



Effect of Dynamic Partitioning 
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Placement Algorithms 
 First fit 

 Search list from the beginning, choose the first free block that fits 
 Can take linear time in total number of blocks (allocated and free) 
 (+) Tend to retain large free blocks at the end 
 (-) Leave small free blocks at beginning 

 Next fit 
 Like first-fit, but search the list starting from the end of previous search 
 (+) Run faster than the first fit 
 (-) Worse memory utilization than the first fit  

 Best fit 
 Search the list, choose the free block with the closest size that fits 
 (+) Keeps fragments small – better memory utilization than the other two 
 (-) Will typically run slower – requires an exhaustive search of the heap 

 

 



Placement Example 
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Buddy System 
 Buddy system  

 Use both fixed and dynamic partitioning  
 Memory blocks are available of size 2K words, L ≤ K ≤ U, where 

− 2L = smallest size block that is allocated  
− 2U = largest size block that is allocated 

 If a request of size s is made, the entire block that fits s is allocated. 
 The buddy system maintains a list of holes (unallocated blocks) 

− It may split a hole in half to create two buddies of half size 
− It may coalesce two holes into a single block of double size 

 



Buddy System Example 
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Tree Representation 
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Addresses 
 Logical address 

 Address starts from 0  

 Relative address 
 An example of logical address 
 Address is expressed as a location relative to some known point 

 Physical address 
 The actual address in main memory 

 



Hardware Support for Relocation 
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Paging 
 Paging 

 Partition memory into equal fixed-size chunks (page frames)  
 Process image is divided into the same fixed-size chunks (pages) 

 Page table 
 Contains the mapping between pages and frames 

− For each page in the process, PTE (page table entry) contains the frame 
number  

 Maintained by operating system for each process 
 CPU must access the page table to generate a physical address for the 

current process 



Assignment of Processes to Frames 
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Page Tables 
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Logical Address 
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Logical to Physical Address Translation 
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Segmentation 
 Segmentation 

 A program is divided into variable-length segments 
 The address consists of segment number + offset 
 No internal fragmentation 
 But, external fragmentation 

− Similar to dynamic partitioning 



Logical to Physical Address Translation 
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Homework 6 
 Exercise 7.2 
 Exercise 7.6 
 Exercise 7.9 
 Exercise 7.15 
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