Operating System

Chapter 7. Memory Managem

Lynn Chol
School of Electrical Engineering

@ HERGFR Computer System Laboratory

Memory Management

d Terminology

Frame A fixed-length block of main memory.

A fixed-length block of data that resides in secondary memory
Page (such as disk). A page of data may temporarily be copied into a
frame of main memory.

A variable-length block of data that resides in secondary memory.
An entire segment may temporarily be copied into an available
Segment region of main memory (segmentation) or the segment may be divided
into pages which can be individually copied into main memory
(combined segmentation and paging).

Source: Pearson

O Requirements — should provide the following functions
» Relocation
> Protection
» Sharing

P e Computer System Laboratory

a

1‘!}%{

...-ﬁl'ﬂ,i;' ;

Relocation, Protection & Sharing

d Relocation

» Programmers typically do not know which other programs will be resident in main
memory at the time of execution of their program

» Active processes need to be swapped in and out of main memory to maximize
processor utilization

» A process may need to be placed in a different area of memory when it is swapped
back

Q Protection
» Processes need to acquire (read, write) permission to reference memory locations

» Memory references generated by a process must be checked at run time to check if
they have permissions (access rights)

» Mechanisms that support relocation also support protection

a Sharing
» Allow each process to access to the same copy of a program rather than having its
own separate copy
» Should provide controlled access to shared areas without compromising protection

» Mechanisms that support relocation also support sharing
P e Computer System Laboratory

Addressing Requirement of a Procejﬂ%ﬂ

» For relocation, OS must know the location of program (instructions, data) as well as
its PCB

Process control >

. . Process Control Block
information

Entry point
to program

Branch
instruction
Increasing
address
values
Reference
to data

Current top
of stack

Source: Pearson
Figure 7.1 Addressing Requirements for a Process
R R Computer System Laboratory

Process Image

Memory
Kermel virtual I invisible to
ernel virtual memor
0xc0000000 y user code
User stack
created at runtime _
(I) «—Y%esp (stack pointer)
T
Memory-mapped region for
shared libraries
0x40000000
T «— brk
Run-time heap
(created by malloc)

Read/write segment

(.data, .bss) Loaded from the

Read-only segment executable file

(-Init, .text, .rodata)
0x08048000)

0 Unused Source: Pearson

P e Computer System Laboratory

Logical/Physical Organization &

» Main memory is organized as a linear array of bytes

— While this organization closely mirrors the machine HW, it does not correspond
to logical organization (user’s view of memory)

a Logical organization
» Users view programs as a collection of modules
— Modules can be written and compiled independently
— Different protection (read-only, execute-only) are given to different modules
— Module level sharing corresponds to the user’s way of viewing the problem
» Segmentation is the tool that most readily satisfies requirement

Q Physical organization
» Computer memory is organized as main memory and secondary memory
» Main memory available for a program may not be sufficient
— Programmer does not know how much space will be available
» Cannot leave the programmer with the responsibility to manage memory

» Overlaying allows various modules to be assigned the same region of
memory

P e Computer System Laboratory

Memory Management

d Memory management techniques involve
» Segmentation, overlaying, and virtual memory, etc.
» We can classify these techniques as
— Memory partitioning — used in old operating systems
— Virtual memory based on paging and segmentation
a Fixed partitioning
» Equal-size partitions
— Any process which fit into the partition can be loaded into any available partition
— Swap out a process if all partitions are full
— Problems
~ A program may be too big to fit in a partition
+ Program needs to be designed with the use of overlays

~ Internal fragmentation
+ Wasted space due inside a partition

» Unequal-size partitions
— Can lessen both of the problems

~ Large partitions can accommodate programs without overlays

~ Small partitions can reduce internal fragmentation
P e Computer System Laboratory

Memory Management Technique

RS

Technigue

Fixed Partitioning

Dynamic Partitioning

Simple Paging

Simple Segmentation

Virtual Memory
Paging

Virtual Memory
Segmentation

Description

Strengths

Weaknesses

Main memory is divided into a
number of static partitions at
system generation time. A process
may be loaded into a partition of
equal or greater size.

Simple to implement;
little operating system
overhead.

Inefficient use of
memory due to internal
fragmentation;
maximum number of
active processes is
fixed.

Partitions are created dynamically,
so that each process is loaded into a
partition of exactly the same size as
that process.

No internal
fragmentation; more
efficient use of main
memory.

Inefficient use of
processor due to the
need for compaction to
counter external
fragmentation.

Main memory is divided into a
number of equal-size frames. Each
process is divided into a number of
equal-size pages of the same length
as frames. A process is loaded by
loading all of its pages into
available, not necessarily
contiguous, frames.

No external
fragmentation.

A small amount of
internal fragmentation.

Each process is divided into a
number of segments. A process is
loaded by loading all of its
segments into dynamic partitions
that need not be contiguous.

No internal
fragmentation; improved
memory utilization and
reduced overhead
compared to dynamic
partitioning.

External fragmentation.

As with simple paging, except that
it is not necessary to load all of the
pages of a process. Nonresident
pages that are needed are brought in
later automatically.

No external
fragmentation; higher
degree of
multiprogramming;
large virtual address
space.

Overhead of complex
memory management.

As with simple segmentation,
except that it is not necessary to
load all of the segments of a
process. Nonresident segments that
are needed are brought in later
automatically.

No internal
fragmentation, higher
degree of
multiprogramming;
large virtual address
space; protection and
sharing support.

Overhead of complex
memory manageme nt.

Computer System Laboratory

Source: Pearson

Equal-size vs Unequal-size Partit

Operating System Operating System
M 8M

2M

4M

6M

{ah Equal-size partitions (b) Unequal-size partitions

Source: Pearson

R

Computer System Laboratory

Memory Assignment with Fixed Partitioning ?;é&

0 Disadvantages
» The number of partitions

specified by the system Operating Tt
.. S stem

limits the number of ansmat N !
active processes —

I —

I —

New New
Processes — 11 - Processes
> Small jobs will not utilize \

partition space efficiently

LI —

(a) One process quene per partition (b) Single queue

Figure 7.3 Memory Assignment for Fixed Partitioning
Source: Pearson

R R Computer System Laboratory

Dynamic Partitioning

O Dynamic partitioning
» Process is allocated as much memory as it requires
» Partitions are of variable length and of variable numbers
» This technique was used by IBM’s mainframe operating system, OS/MVT

O External fragmentation

» Memory becomes more and more fragmented
» Memory utilization declines

O Compaction

» Technique to overcome external fragmentation
» OS shifts processes so that they are contiguous
» Itis a time consuming process, wasting CPU time

P e Computer System Laboratory

Effect of Dynamic Partitioning

Ciperating aM Ciperating
System System
Process 1
}\v SeM
J
(@) {b)
Ciperating Ciperating
System System
Process 1 20M Process 1
Process 4
14M
Process 3 18M Process 3
4M
() {f)

20M

3eM

20M

am
&M

18M

4M

Ciperating
System

Process 1

Process 2

()

Ciperating
System

Process4

Process 3

(9)

20M

14M

22M

20M

Ciperating
System

Process 1

Process 2

Process 3

d)

Ciparating
System

Process 2

Process4

Process 3

(h)

Figure 7.4 The Effect of Dynamic Partitioning

R

20M

14M

18M

4M

14M

1]

&M
&M

18M

4M

Source: Pearson

Computer System Laboratory

Placement Algorithms

a First fit

» Search list from the beginning, choose the first free block that fits
» Can take linear time in total number of blocks (allocated and free)
» (+) Tend to retain large free blocks at the end

» (-) Leave small free blocks at beginning

O Next fit

» Like first-fit, but search the list starting from the end of previous search
» (+) Run faster than the first fit
» (-) Worse memory utilization than the first fit

O Best fit

» Search the list, choose the free block with the closest size that fits
» (+) Keeps fragments small — better memory utilization than the other two
» (-) Will typically run slower — requires an exhaustive search of the heap

P e Computer System Laboratory

Placement Example

86 SM
AN ;
M First Fit 1M
22M >
oM
Best Fit
Last 181‘[
allocated
M
block (14M)
SN SM
oM oM

14M I:l Possible new allocation 1400

MNext Fit

36M
20 M

(a) Before (b After

Figure 7.5 Example Memory Configuration before Source: Pearson

and after Allocation of 16-Mbyte Block
R R Computer System Laboratory

Buddy System

0O Buddy system
» Use both fixed and dynamic partitioning
» Memory blocks are available of size 2K words, L < K < U, where
— 2L = smallest size block that is allocated
— 2Y = largest size block that is allocated
» If arequest of size s is made, the entire block that fits s is allocated.
» The buddy system maintains a list of holes (unallocated blocks)
— It may split a hole in half to create two buddies of half size
— It may coalesce two holes into a single block of double size

P e Computer System Laboratory

Buddy System Example

1 Mbyte block | 1M |
Request 100K | A=128K| 128K | 256K | 512K |
Request 240K | A=128K| 128K | B = 256K | 512K |
Request 64 K | A= 128K [c - o] 64K | B = 256K | 512K |
Request 256 K | A= 128K [c -] 64K | B = 256K | D = 256K | 256K |
Release B | A= 128K [c=s4k| 64K | 256K | D = 256K | 256K |
Release A | 128K [c-oix] 64K | 256K | D = 256K | 256K |
Request 75 K | E= 128K [c -] 64K | 256K | D = 256K | 256K |
Release C [E=128K| 128K | 256K | D = 256K | 256K |
Release E | 512K | D = 256K | 256K |
Release D | 1M |

Figure 7.6 Example of Buddy System

Source: Pearson

RS

Computer System Laboratory

Tree Representation

1M

512K

256K

128K

&K

w L L
[A=128K [c-stk] 64K | 256K | D=256K | 256K |

O Leaf node for O Leaf node for @ MNon-leaf node

allocated block unallocated block

Source: Pearson

Figure 7.7 Tree Representation of Buddy System

R R Computer System Laboratory

Addresses

a Logical address
» Address starts from 0O

O Relative address

» An example of logical address
» Address is expressed as a location relative to some known point

Q Physical address
» The actual address in main memory

P e Computer System Laboratory

Hardware Support for Relocation FN

i
Relative address
fProcess Control Block
| Base Register + —————————————————————— »
Y
»| Adder Program
Absolute
] address
Bounds Register l—h Comparator - — — — ,

| | |

| | !

| ' |

| e e —»

| ¥ Data

[Interrupt o

| .]

| operating system

I

I

I

: Stack

I

l\ - -

Process image in
main memory

Source: Pearson
Figure 7.8 Hardware Support for Relocation

R R Computer System Laboratory

Paging

a Paging
» Partition memory into equal fixed-size chunks (page frames)
» Process image is divided into the same fixed-size chunks (pages)

O Page table

» Contains the mapping between pages and frames

— For each page in the process, PTE (page table entry) contains the frame
number

» Maintained by operating system for each process

» CPU must access the page table to generate a physical address for the
current process

P e Computer System Laboratory

Assignment of Processes to Frames §&

R ARG

Frame
number

WO owl o B W op =D

10
11
12
13
14

{a) Fifteen Available Frames

W o= bW p =D

N —
F o =]

Main memory

Main memory

A0

A

A2

A3
e B0

e BT Sy

SORRNEERNN

g

Lk

AR

3,

{d) Load Process C

LT= T I I DR W, R N E R M =]

[—
B W ol = D

[=B = VR ¥, QY N L I = |

N —
oW oRd = D WD

Main memory

A

A

A2

A3

(b} Load Process A

Main memory

A

A

A2

A3

AT

i

A

e 3,

(&) Swap out B

[+ I NI = R ¥, QN N FE R IE I =]

[——
oW o = oW

[= "I = R R S L L=

-
oW R = O WD

Main memory

A0

A

A2

A3
S B0 ey

S B-1 ey

NN B2 NN

{c) Load Process B

Main memory

A

A

A2

A3

Duo

DA

D.2
GLAKT

AR,

AR

a3
D3

D4

(f} Load Process D

Figure 7.9 Assignment of Process Pages to Free Frames

Source: Pearson

Computer System Laboratory

Page Tables

I

0 0 0 — 0 7 0 4 13
1] 1 1| — 1| 8 1| 5 14
2| 2 2| — 2. 9 2| 6
13 Drocess B 310 310 FI’EE]if:;ﬂlllE
Process A page table Process C 41 12
page table page table Process D
page table

Figure 7.10 Data Structures for the Example of Figure 7.9 at Time Epoch (f)

Source: Pearson

R R Computer System Laboratory

Logical Address

Logical address = Logical address =
Relative address = 1507 Page# =1, Offset =478 Segment# = 1, Offset = 752
[0000010111011110] [0000010111011110] [o001pp01011110000]
=3
- -
= 3
o g2 =2
w B
2 o
g
c E _ &
£ 2 «— & < - 2
F R ¥ = &
— - =
¥ =
£
o
X w2
~]
% 4 £
£ =
{a} Partitioning é‘ = {c) Segmentation
Y - =0
£
S

(b} Paging
(page size = 1K)

Figure 7.11 Logical Addresses

Source: Pearson
R R Computer System Laboratory

Logical to Physical Address Translatio_pﬂ

B 16-bit logical address .
« 6-bit page # . 10-bit offset
0j0|0|OfO|TfO|T|1[1]0f7]71}7]1]0
L. ~ - — -
I
0000701]
»1| 000110 |
2101100
Process
page table v v
— P -
010|10[(1[1]0|O[T1[1[T]O[T[1]T]T1]O
4 >
16-bit physical address
(a) Paging

Source: Pearson

AR RS Computer System Laboratory

Segmentation

O Segmentation
» A program is divided into variable-length segments
» The address consists of segment number + offset
» No internal fragmentation
» But, external fragmentation
— Similar to dynamic partitioning

P e Computer System Laboratory

Logical to Physical Address Translation

16-bit logical address

ER R

4-bit segment # 12-bit offset
4 e *
0]10(1]0 111]0{0]|0}J0
'-._.-—-.I,--——-—...-i'-— —— '
Length Base
Q01011101110 | 000001 0000000000
OTTTT0OTT110 | 0070000000 100000
Process segment table
p—
010
4
(b) Segmentation

Source: Pearson

v |9

16-bit physical address

Computer System Laboratory

Homework 6

d Exercise 1.2
d Exercise 1.6
ad Exercise 1.9
d Exercise 1.15

P e Computer System Laboratory

	Operating System��Chapter 7. Memory Management
	Memory Management
	Relocation, Protection & Sharing
	Addressing Requirement of a Process
	Process Image
	Logical/Physical Organization
	Memory Management
	Memory Management Techniques
	Equal-size vs Unequal-size Partition
	Memory Assignment with Fixed Partitioning
	Dynamic Partitioning
	Effect of Dynamic Partitioning
	Placement Algorithms
	Placement Example
	Buddy System
	Buddy System Example
	Tree Representation
	Addresses
	Hardware Support for Relocation
	Paging
	Assignment of Processes to Frames
	Page Tables
	Logical Address
	Logical to Physical Address Translation
	Segmentation
	Logical to Physical Address Translation
	Homework 6

