Chapter 1

Basic Concepts

1.1 Definitions

1.1.1 Vector

1. A vector is a quantity which has both direction and magnitude.

$$
\begin{equation*}
A \tag{1.1}
\end{equation*}
$$

1.1.2 Magnitude of a vector

1. The magnitude of a vector is defined by

$$
\begin{equation*}
|\boldsymbol{A}|=A . \tag{1.2}
\end{equation*}
$$

1.1.3 The unit vector

1. The unit vector is defined by

$$
\begin{equation*}
\hat{a}=\frac{\boldsymbol{A}}{A} . \tag{1.3}
\end{equation*}
$$

1.1.4 Vector addition

1. Vector addition satisfies commuatative law and associative law.

$$
\begin{gather*}
\boldsymbol{A}+\boldsymbol{B}=\boldsymbol{B}+\boldsymbol{A} . \tag{1.4a}\\
\boldsymbol{A}+(\boldsymbol{B}+\boldsymbol{C})+(\boldsymbol{A}+\boldsymbol{B})+\boldsymbol{C}=\boldsymbol{A}+\boldsymbol{B}+\boldsymbol{C} . \tag{1.4b}
\end{gather*}
$$

1.1.5 Additive identity

1. There is the addictive identity, $\mathbf{0}$, which call a null vector.

$$
\begin{equation*}
A+\mathbf{0}=A \tag{1.5}
\end{equation*}
$$

, for any \boldsymbol{A}.

1.1.6 Addictive inverse

1. There is the addictive inverser $-\boldsymbol{A}$.

$$
\begin{equation*}
\boldsymbol{A}+(-\boldsymbol{A})=0 \tag{1.6}
\end{equation*}
$$

, for each \boldsymbol{A}.

1.1.7 Scalar multiplication

1. If a scalar a is multiplied to a vector \boldsymbol{A}, the product also a vector.

$$
\begin{equation*}
a \times \boldsymbol{A}=a \boldsymbol{A} . \tag{1.7}
\end{equation*}
$$

2. The scalar multiplication satisfies distributive law and associative law.

$$
\begin{gather*}
(a+b) \boldsymbol{A}=a \boldsymbol{A}+b \boldsymbol{A} \tag{1.8a}\\
a(\boldsymbol{A}+\boldsymbol{B})=a \boldsymbol{A}+a \boldsymbol{B} \tag{1.8b}\\
a(b \boldsymbol{A})=(a b) \boldsymbol{A}=a b \boldsymbol{A} \tag{1.8c}
\end{gather*}
$$

1.1.8 Vector substraction

$$
\begin{equation*}
\boldsymbol{A}-\boldsymbol{B}=\boldsymbol{A}+(-\boldsymbol{B}) \tag{1.9}
\end{equation*}
$$

1.1.9 Representation of vector

1. A vector can be expressed as a linear combination of basis vectors. For example, we can express \boldsymbol{A} of the form

$$
\begin{equation*}
\boldsymbol{A}=\sum_{n=1}^{3} A_{i} \hat{\boldsymbol{e}}_{i} \tag{1.10}
\end{equation*}
$$

, where \hat{e}_{i} are unit vectors of the three-dimensional orthogonal coordinate.

1.2 Scalar Product

1.2.1 Scalar Product

1. The scalar product of two vectors is defined by

$$
\begin{equation*}
\boldsymbol{A} \cdot \boldsymbol{B}=A B \cos \theta \tag{1.11}
\end{equation*}
$$

, where θ is the angle between two vectors. Scalar product is commutative.
2. In the three-dimensional orthogonal coordinate system, the scalar product of two basis vectors is

$$
\begin{equation*}
\hat{\boldsymbol{e}_{i}} \cdot \hat{\boldsymbol{e}_{j}}=\delta_{i j} \tag{1.12}
\end{equation*}
$$

,where the Kronecker delta $\delta_{i j}$ is defined by

$$
\delta_{i j}= \begin{cases}1, & \text { if } i=j \tag{1.13}\\ 0, & \text { otherwise }\end{cases}
$$

Therefore, in the above coordinate system, the scalar product of two vectors is

$$
\begin{equation*}
\boldsymbol{A} \cdot \boldsymbol{B}=\sum_{i, j=1}^{3}\left(A_{i} \hat{\boldsymbol{e}}_{i}\right) \cdot\left(B_{j} \hat{e}_{j}\right)=\sum_{i, j=1}^{3} A_{i} B_{j} \delta_{i j}=\sum_{i, j=1}^{3} A_{i} B_{i}=B_{i} A_{i} \tag{1.14}
\end{equation*}
$$

3. We have learened about the law of cosines.

$$
\begin{equation*}
C^{2}=A^{2}+B^{2}-2 A B \cos \theta \tag{1.15}
\end{equation*}
$$

1.2.2 directional cosines

1. The vector \boldsymbol{A} makes anglea with axes.

$$
\begin{align*}
A_{x} & =A \cos \alpha \tag{1.16a}\\
A_{y} & =A \cos \beta \tag{1.16b}\\
A_{z} & =A \cos \gamma \tag{1.16c}
\end{align*}
$$

, where $\cos \alpha, \cos \beta, \cos \gamma$ is called the directional cosines of \boldsymbol{A}.

1.3 Vector Product - Cross Product

1.3.1 Vector product

1. The vector product of two vectors is defined by

$$
\begin{equation*}
\boldsymbol{A} \times \boldsymbol{B}=\hat{\boldsymbol{n}} A B \sin \theta \tag{1.17}
\end{equation*}
$$

2. In the three-dimensional orthogonal coordinates, the vector product of two basis vector is

$$
\begin{equation*}
\hat{e}_{i} \times \hat{e}_{j}=\epsilon_{i j k} \hat{e_{k}} \tag{1.18}
\end{equation*}
$$

, where $\epsilon_{i j k}$ is called the Levi-Civita symbol.

$$
\epsilon_{i j k}= \begin{cases}1, & \text { if }(i, j, k)=(1,2,3),(2,3,1),(3,1,2), \tag{1.19}\\ -1, & \text { if }(i, j, k)=(3,2,1),(2,1,3),(1,3,2), \\ 0, & \text { otherwise }\end{cases}
$$

3. In the three-dimensional orthogonal coordinates, the vector product of two vector is

$$
\begin{equation*}
(A \times \boldsymbol{B})_{i}=\sum_{j, k=1}^{3}\left(A_{j} \hat{e}_{j}\right) \times\left(B_{k} \hat{e}_{k}\right)=\sum_{j, k=1}^{3} \epsilon_{i j k} \hat{e}_{i} A_{j} B_{k} \tag{1.20}
\end{equation*}
$$

1.3.2 The law of sines

1. If $\boldsymbol{A}+\boldsymbol{B}+\boldsymbol{C}=\mathbf{0}, \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ satisfy following relations.

$$
\begin{gather*}
\boldsymbol{A} \times \boldsymbol{B}=\boldsymbol{B} \times \boldsymbol{C}=\boldsymbol{C} \times \boldsymbol{A}, \tag{1.21a}\\
\frac{\sin \alpha}{A}=\frac{\sin \beta}{B}=\frac{\sin \gamma}{C} . \tag{1.21b}
\end{gather*}
$$

1.4 Triple Products

1.4.1 Triple scalar product

1. The triple scalar product of three vectors is defined by

$$
\begin{equation*}
\boldsymbol{A} \cdot(\boldsymbol{B} \times \boldsymbol{C})=\boldsymbol{A} \cdot \boldsymbol{B} \times \boldsymbol{C} \tag{1.22}
\end{equation*}
$$

2. In three-dimensional orthogonal coordinates system, the triple scalar product of three vectors becomes

$$
\begin{equation*}
\boldsymbol{A} \cdot \boldsymbol{B} \times \boldsymbol{C}=\sum_{i, j, k=1}^{3} \epsilon_{i j k} A_{i} B_{j} C_{k} \tag{1.23}
\end{equation*}
$$

1.4.2 Triple vector product

1. The triple vector product of three vectors is defined by

$$
\begin{equation*}
\boldsymbol{A} \times(\boldsymbol{B} \times \boldsymbol{C}) \tag{1.24}
\end{equation*}
$$

The triple vector product is same as

$$
\begin{equation*}
A \times(B \times C)=B(A \cdot C)-C(A \cdot B) \tag{1.25}
\end{equation*}
$$

We call this rule BAC-CAB rule.

1.5 Rotational Properties of a Vector

1.5.1 Position Vector

1. The position vector is defined by

$$
\begin{equation*}
\boldsymbol{x}=\sum_{i=1}^{3} x_{i} \hat{\boldsymbol{e}}_{i} . \tag{1.26}
\end{equation*}
$$

2. Let \boldsymbol{x}^{\prime} is a vector which has been transformed form \boldsymbol{x} by rotation. Under the rotation, the magnitude of \boldsymbol{x} is cannot changed.

$$
\begin{equation*}
x_{i}^{\prime 2}=x_{i}^{2} \tag{1.27}
\end{equation*}
$$

1.5.2 Rotation Transfromation Coefficient

1. The rotation transformation coefficient $R_{i j}$ satisfy

$$
\begin{equation*}
x_{i}^{\prime}=R_{i j} x_{j} \tag{1.28}
\end{equation*}
$$

2. Then, we can verify eq. (1.28).

$$
\begin{align*}
x_{i}^{2} & =x_{i}^{\prime 2} \tag{1.29}\\
& =\left(R_{i j} x_{j}\right)\left(R_{i k} x_{k}\right) \tag{1.30}\\
& =\left(R_{i j} R_{i k}\right)\left(x_{i} x_{k}\right) \tag{1.31}\\
& =\left(R_{i j} R_{i k}\right) x_{j} x_{k} . \tag{1.32}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
R i j R_{i k}=\delta_{j k} . \tag{1.33}
\end{equation*}
$$

1.5.3 Definition of vector

1. If a quantity A transforms like as

$$
\begin{equation*}
A_{i}^{\prime}=\sum_{j} R_{i j} A_{j} \tag{1.34}
\end{equation*}
$$

we call \boldsymbol{A} a vector.

