Quantum Mechanics 1

Assignment 2

Due: April 2 (Tuesday), 2013

1. Consider a wave function of the form

$$\psi(x) = A \exp(-ax^2),\tag{1}$$

where A and a are positive constants.

(a) Express A in terms of a.

(b) Compute the wave function $\phi(p)$ in momentum space corresponding to $\psi(x)$.

- (c) Compute $\langle x^2 \rangle$ and $\langle x \rangle^2$ using $\psi(x)$ and $\phi(p)$.
- (d) Compute $\langle p^2 \rangle$ and $\langle p \rangle^2$ using $\psi(x)$ and $\phi(p)$.
- (e) Verify the uncertainty relation $\Delta x \cdot \Delta p \geq \hbar/2$.

(N.b. The uncertainty is defined as $\Delta x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$, and likewise for Δp .)

2. Find the Fourier tranforms of the following functions:

(a)

$$f(x) = \begin{cases} x, & |x| < 1\\ 0, & |x| \ge 1 \end{cases}$$
(2)

(b)

$$f(x) = \begin{cases} |x|, & |x| < 1\\ 0, & |x| \ge 1 \end{cases}$$
(3)

$$f(x) = \begin{cases} 1 - |x|, & |x| < 1\\ 0, & |x| \ge 1 \end{cases}$$
(4)

- 3. Consider the wave packet at t = 0 ψ(x, 0) = A exp[-(|x|/L) + ip_0x/ħ].
 (a) Normalize ψ(x, 0).
 - (b) Calculate $\phi(p, 0)$ and $\phi(p, t)$. Verify that each is normalized.

(c) Examine the width of the wave packets in configuration space and momentum space at t = 0 and verify that the uncertainty relations are satisfied.

- 4. Consider a state function which is real, $\psi(x) = \psi^*(x)$.
 - (a) Show that $\langle p \rangle = 0$. What about $\langle p^2 \rangle$? $\langle x \rangle$?
 - (b) Under what conditions of $\psi(x)$, is $\phi(p)$ real, and what then is $\langle x \rangle$?
- 5. In class, I argued that the commutation relation $[x, p] = i\hbar$ is fundamental, and the form of the operators x and p in coordinate, and momentum spaces are devised to satisfy the commutation relation. For example, in coordinate space, we put $x_{\rm op} = x$, and $p_{\rm op} = -i\hbar\partial/\partial x$.

Let us define, in coordinate space, $x_{op} = x + x_0$, $p_{op} = -i\hbar\partial/\partial x + p_0$, where x_0 and p_0 are real numbers. These operators also satisfy the above commutation relation. Then what is the meaning of these new operators? (Hint: Consider expectation values.)

And what are the forms of the newly defined operators in momentum space?