Quantum Mechanics 1

Assignment 2

Due: April 2 (Tuesday), 2013

1. Consider a wave function of the form

$$
\begin{equation*}
\psi(x)=A \exp \left(-a x^{2}\right), \tag{1}
\end{equation*}
$$

where A and a are positive constants.
(a) Express A in terms of a.
(b) Compute the wave function $\phi(p)$ in momentum space corresponding to $\psi(x)$.
(c) Compute $\left\langle x^{2}\right\rangle$ and $\langle x\rangle^{2}$ using $\psi(x)$ and $\phi(p)$.
(d) Compute $\left\langle p^{2}\right\rangle$ and $\langle p\rangle^{2}$ using $\psi(x)$ and $\phi(p)$.
(e) Verify the uncertainty relation $\Delta x \cdot \Delta p \geq \hbar / 2$.
(N.b. The uncertainty is defined as $\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}$, and likewise for Δp.)
2. Find the Fourier tranforms of the following functions:
(a)

$$
f(x)= \begin{cases}x, & |x|<1 \tag{2}\\ 0, & |x| \geq 1\end{cases}
$$

(b)

$$
f(x)=\left\{\begin{array}{cc}
|x|, & |x|<1 \tag{3}\\
0, & |x| \geq 1
\end{array}\right.
$$

(c)

$$
f(x)=\left\{\begin{array}{cc}
1-|x|, & |x|<1 \tag{4}\\
0, & |x| \geq 1
\end{array}\right.
$$

3. Consider the wave packet at $t=0 \psi(x, 0)=A \exp \left[-(|x| / L)+i p_{0} x / \hbar\right]$.
(a) Normalize $\psi(x, 0)$.
(b) Calculate $\phi(p, 0)$ and $\phi(p, t)$. Verify that each is normalized.
(c) Examine the width of the wave packets in configuration space and momentum space at $t=0$ and verify that the uncertainty relations are satisfied.
4. Consider a state function which is real, $\psi(x)=\psi^{*}(x)$.
(a) Show that $\langle p\rangle=0$. What about $\left\langle p^{2}\right\rangle$? $\langle x\rangle$?
(b) Under what conditions of $\psi(x)$, is $\phi(p)$ real, and what then is $\langle x\rangle$?
5. In class, I argued that the commutation relation $[x, p]=i \hbar$ is fundamental, and the form of the operators x and p in coordinate, and momentum spaces are devised to satisfy the commutation relation. For example, in coordinate space, we put $x_{\mathrm{op}}=x$, and $p_{\mathrm{op}}=-i \hbar \partial / \partial x$.
Let us define, in coordinate space, $x_{\mathrm{op}}=x+x_{0}, p_{\mathrm{op}}=-i \hbar \partial / \partial x+p_{0}$, where x_{0} and p_{0} are real numbers. These operators also satisfy the above commutation relation. Then what is the meaning of these new operators? (Hint: Consider expectation values.)
And what are the forms of the newly defined operators in momentum space?
