Microprocessor Microarchitecture

Introduction

Lynn Choi School of Electrical Engineering

Computer System Laboratory

Class Information

Lecturer

Prof. Lynn Choi, 02-3290-3249, lchoi@korea.ac.kr

□ Textbook

- Computer Architecture, A Quantitative Approach
 - 5th edition, Hennessy and Patterson, Morgan Kaufmann
- Lecture slides (collection of research papers)
- Reading list (refer to the class homepage)

Content

- Introduction
- Branch Prediction
- Instruction Fetch
- Data Hazard and Dynamic Scheduling
- Limits on ILP
- Exceptions
- Multiprocessors and Multithreading
- Advanced Cache Design and Memory Hierarchy
- IA64 and Itanium CPU

Class Information

□ Special Topics

- Multicore and manycore processors
- Presentation of ~2 papers in the subject

D Project

- Research proposal
- Simulation and experimentation results
- Detailed survey

□ Evaluation

- > Midterm : 35%
- Final: 35%
- Presentation: 15%
- Project: 15%

Class organization

- Lecture: 70%
- Presentation: 30% (after Midterm)

Advances in Intel Microprocessors

髙麓大學校

Computer System Laboratory

Intel® Pentium 4 Microprocessor

□ Intel Pentium IV Processor

- Technology
 - 0.13µ process, 55M transistors, 82W
 - 3.2 GHz, 478pin Flip-Chip PGA2
- Performance
 - 1221 Ispec, 1252 Fspec on SPEC 2000

- Relative performance to SUN 300MHz Ultra 5_10 workstation (100 Ispec/Fspec)
- 40% higher clock rate, 10~20% lower IPC compared to P III
- Pipeline
 - 20-stage out-of-order (OOO) pipeline, hyperthreading
 - 2 ALUs run at 6.4GHz
- Cache hierarchy
 - 12K micro-op trace cache/8 KB on-chip D cache
 - On-chip 512KB L2 ATC (Advanced Transfer Cache)
 - Optional on-die 2MB L3 Cache
- > 800MHz system bus, 6.4GB/s bandwidth
 - Implemented by quad-pumping on 200MHz system bus

Intel® Itanium® 2 processor

□ Intel® Itanium® 2 processor

- Technology
 - 1.5 GHz, 130W
- Performance: 1322 Ispec, 2119 Fspec

 - 50% higher transaction performance compared to Sun UltraSPARC III Cu processor (4-way MP system)

Intel Corp. All rights reserved

- EPIC architecture
- Pipeline
 - 8-stage in-order pipeline_(10-stage in Itanium)
 - 11 issue ports (9 ports in Itanium)
 - 6 INT, 4 MEM, 2 FP, 1 SIMD, 3 BR (4 INT, 2 MEM in Itanium)
- Cache hierarchy
 - 32KB L1 cache, 256KB L2 cache, and up to 6MB L3 Cache
- Memory and System Interface
 - 50b PA, 64b VA
 - 400MHz 128-bit system bus, 6.4GB/s bandwidth (compared to 266MHz 64bit system bus, 2.1GB.s in Itanium)

Microprocessor Performance Curve

髙麓大學校

Computer System Laboratory

Intel i7 Processor

Technology

髙麗大學校

- 32nm process, 130W, 239 mm² die
- 3.46 GHz, 64-bit 6-core 12-thread processor
- 159 Ispec, 103 Fspec on SPEC CPU 2006 (296MHz UltraSparc II processor as a reference machine)
- Core microarchitecture
 - Next generation *multi-core* microarchitecture introduced in Q1 2006 (Derived from P6 microarchitecture)
 - Optimized for multi-cores and lower power consumption
 - 14-stage 4-issue out-of-order (OOO) pipeline
 - 64bit Intel architecture (x86-64)
 - Core i3 (entry-level), Core i5 (mainstream consumer), Core i7 (high-end consumer), Xeon (server)
- > 256KB L2 cache/core, 12MB L3 Caches
- Integrated memory controller

Intel Corp. All rights reserved

Computer System Laboratory

Intel i7 System Architecture

□ Integrated memory controller

 3 Channel, 3.2GHz clock, 25.6 GB/s memory bandwidth (memory up to 24GB DDR3 SDRAM), 36 bit physical address

QuickPath Interconnect (QPI)

- Point-to-point processor interconnect, replacing the front side bus (FSB)
- 64bit data every two clock cycles, up to 25.6GB/s, which doubles the theoretical bandwidth of 1600MHz FSB

Direct Media Interface (DMI)

The link between Intel Northbridge and Intel Southbridge, sharing many characteristics with PCI-Express

□ IOH (Northbridge)

□ ICH (Southbridge)

Today's Microprocessor

□ Sun UltraSPARC T2 processor ("Niagara II")

- Multithreaded multicore technology
 - Eight 1.4 GHz cores, 8 threads per core \rightarrow total 64 threads
 - 65nm process, 1831 pin BGA, 503M transistors, 84W power consumption
- Core microarchitecture: Two issue 8-stage instruction pipelines
- 4MB L2 8 banks, 64 FB DIMMs, 60+ GB/s memory bandwidth "Victoria Falls"

Oracle. All rights reserved

□ Sun UltraSPARC T3 processor ("Rainbow Falls")

▶ 40nm process, 16 1.65GHz cores, 8 threads per core \rightarrow total 128 threads

髙麗大學校

Trends in Technology

Integrated circuit technology

- Transistor density: 35%/year
- ➤ Die size: 10-20%/year
- Integration overall: 40-55%/year

□ DRAM capacity: 25-40%/year (slowing)

□ Flash capacity: 50-60%/year

▶ 15-20X cheaper/bit than DRAM

□ Magnetic disk technology: 40%/year

- ▶ 15-25X cheaper/bit then Flash
- > 300-500X cheaper/bit than DRAM

Computer System Laboratory

Bandwidth and Latency

Bandwidth or throughput

- Total work done in a given time
- 10,000-25,000X improvement for processors
- ➤ 300-1200X improvement for memory and disks

□ Latency or response time

- Time between start and completion of an event
- > 30-80X improvement for processors
- ► 6-8X improvement for memory and disks

Feature size

- Minimum size of transistor or wire in x or y dimension
- ▶ 10 microns in 1971 to .032 microns in 2011
- Transistor performance scales linearly
- ► Integration density scales (*more than*) quadratically
- However, wire delay scales poorly compared to transistor performance!
 - In the past few years, both wire delay and power dissipation have become major design limitations for VLSI design Copyright © 2012, Elsevier Inc. All

rights reserved.

Computer System Laboratory

Bandwidth and Latency

Log-log plot of bandwidth and latency milestones

Copyright © 2012, Elsevier Inc. All rights reserved.

髙麗大學校

Computer System Laboratory

Dynamic Power

□ For CMOS chips, traditional dominant energy consumption has been in switching transistors, called dynamic power

 $Power_{dynamic} = 1/2 \times CapacitiveLoad \times Voltage^{2} \times FrequencySwitched$

- For a fixed task, slowing clock rate (frequency switched) reduces power, but not energy
- Dropping voltage helps both, so went from 5V to 1V
- Capacitive load is a function of number of transistors connected to output and technology determines capacitance of wires and transistors
- □ To save energy & dynamic power, most CPUs now turn off clock of inactive modules (e.g. FPU)

Example

□ Suppose 15% reduction in voltage results in a 15% reduction in frequency. What is impact on dynamic power?

 $Powerdynamic = 1/2 \times CapacitiveLoad \times Voltage^{2} \times FrequencySwitched$ = 1/2 \times CapacitiveLoad \times (.85 \times Voltage)^{2} \times .85 \times FrequencySwitched = (.85)^{3} \times OldPowerdynamic \approx 0.6 \times OldPowerdynamic

□ Because leakage current flows even when a transistor is off, static power important too

*Power*static = *Current*static × *Voltage*

- Leakage current increases in processors with smaller transistor sizes
- □ In 2006, goal for leakage is 25% of total power consumption; high performance designs at 40%
- Very low power systems even gate voltage to inactive modules to control loss due to leakage

Processor Performance Equation

$\Box T_{exe}$ (Execution time per program)

= $NI * CPI_{execution} * T_{cycle}$

- NI: # of instructions / program (program size)
 - Small program is better
- CPI: clock cycles / instruction
 - Small CPI is better. In other words, higher IPC is better
- \succ T_{cycle} = clock cycle time
 - Small clock cycle time is better. In other words, higher clock speed is better

Clock Speed versus Power

- □ Intel 80386 consumed ~ 2 W
- □ 3.3 GHz Intel Core i7 consumes 130 W
- □ Heat must be dissipated from 1.5 x 1.5 cm chip
- □ This is the limit of what can be cooled by air

髙麓大學校

Definition: Performance

Performance: What to measure

- Usually rely on benchmarks vs. real workloads
- □ To increase predictability, collections of benchmark applications, called benchmark suites, are popular
- SPECCPU: popular desktop benchmark suite
 - > CPU only, split between integer and floating point programs
 - > SPECint2000 has 12 integer, SPECfp2000 has 14 FP programs
 - > SPECCPU2006 is announced Spring 2006
 - 12 integer and 17 FP programs
- Transaction Processing Council measures server performance and cost-performance for databases
 - > TPC-C Complex query for Online Transaction Processing
 - TPC-H models ad hoc decision support
 - > TPC-W a transactional web benchmark
 - > TPC-App application server and web services benchmark

SPEC Benchmark Evolution

SPEC2006 benchmark description	Benchmark name by SPEC generation				
	SPEC2006	SPEC2000	SPEC95	SPEC92	SPEC89
GNU C compiler -					— gcc
Interpreted string processing			– perl		espresso
Combinatorial optimization		— mcf			li
Block-sorting compression		— bzip2		compress	eqntott
Go game (AI)	go	vortex	go	sc	
Video compression	h264avc	gzip	ijpeg		2
Games/path finding	astar	eon	m88ksim		
Search gene sequence	hmmer	twolf		•	
Quantum computer simulation	libquantum	vortex			
Discrete event simulation library	omnetpp	vpr			
Chess game (AI)	sjeng	crafty			
XML parsing	xalancbmk	parser			
CFD/blast waves	bwaves				fpppp
Numerical relativity	cactusADM				tomcatv
Finite element code	calculix				doduc
Differential equation solver framework	dealll				nasa7
Quantum chemistry	gamess				spice
EM solver (freq/time domain)	GemsFDTD	1		swim	matrix30
Scalable molecular dynamics (~NAMD)	gromacs		apsi	hydro2d	
Lattice Boltzman method (fluid/air flow)	lbm		mgrid	su2cor	
Large eddie simulation/turbulent CFD	LESlie3d	wupwise	applu	wave5	
Lattice quantum chromodynamics	milc	apply	turb3d	-	
Molecular dynamics	namd	galgel			
Image ray tracing	povray	mesa			
Spare linear algebra	soplex	art			
Speech recognition	sphinx3	equake			
Quantum chemistry/object oriented	tonto	facerec			
Weather research and forecasting	wrf	ammp			
Magneto hydrodynamics (astrophysics)	zeusmp	lucas			
		fma3d			
		sixtrack			

© 2007 Elsevier, Inc. All rights reserved.

How Summarize Suite Performance (1/3)

□ Arithmetic average of execution time of all programs?

But they vary by 4X in speed, so some would be more important than others in arithmetic average

□ Could add a weights per program, but how pick weight?

- > Different companies want different weights for their products
- SPECRatio: Normalize execution times to reference computer, yielding a ratio proportional to performance

time on reference computer

time on computer being rated

How Summarize Suite Performance (2/3)

□ If SPECRatio on Computer A is 1.25 times bigger than Computer B, then

Note that when comparing 2 computers as a ratio, execution times on the reference computer drop out, so choice of reference computer is irrelevant **How Summarize Suite Performance (3/3)**

□ Since we use ratios, proper mean is geometric mean (SPECRatio unitless, so arithmetic mean meaningless)

GeometricMean =
$$\sqrt[n]{\prod_{i=1}^{n} SPECRatio_{i}}$$

Exercises & Discussion

- 3.2GHz Pentium4 processor is reported to have SPECint ratio of 1221 and SPECfp ratio of 1252 in SPEC2000 benchmarks. What does this mean?
- How much memory can you address using 38 bits of address assuming byte-addressability?
- Classify Intel's 32bit microprocessors in terms of processor generations from 80386 to Pentium 4. What's the meaning of generation here?
- □ Assume two processors, one RISC and one CISC implemented at the same clock speed and the same IPC. Which one performs better?

Homework 1

□ Read Chapter 1 and Chapter 2

□ Exercise

- > 1.4
- > 1.5
- > 1.10
- > 1.13
- ▶ 1.18