Communication Systems II
 [KECE322_OI]
 <2012-2nd Semester>

Lecture \#| 5
2012. 10. 24
School of Electrical Engineering Korea University
Prof. Young-Chai Ko

Outline

- Optimum decision rule
- MAP criterion
- ML criterion
- Minimum Euclidean distance rule
- Maximum correlation rule
- Average symbol rate
- M-ary PAM
- M-ary orthogonal signals

Optimum Detector

- Posteriori probability

$$
P\left(\text { signal } \mathbf{s}_{m} \text { was transmitted } \mid \mathbf{y}\right)
$$

- Optimum decision rule
- Select the signal corresponding to the maximum set of posteriori probabilities:

$$
\text { choose } m \text { such that }\left\{P\left(\mathbf{s}_{m} \mid \mathbf{y}\right)\right\}_{m=1}^{M} \text { is maximum }
$$

- which is called "maximum a posteriori (MAP)" criterion.
- Bays' rule

$$
P\left(\mathbf{s}_{m} \mid \mathbf{y}\right)=\frac{f\left(\mathbf{y} \mid \mathbf{s}_{m}\right) P\left(\mathbf{s}_{m}\right)}{f(\mathbf{y})}
$$

where $P\left(\mathbf{s}_{m}\right)$ is called "a priori probability".

- MAP criterion
choose m such that $\left\{P\left(\mathbf{s}_{m} \mid \mathbf{y}\right)\right\}_{m=1}^{M}$ is maximum
$=$ choose m such that $\left\{\frac{f\left(\mathbf{y} \mid \mathbf{s}_{m}\right) P\left(\mathbf{s}_{m}\right)}{f(\mathbf{y})}\right\}_{m=1}^{M}$ is maximum
- For equally probable case, that is, $P\left(\mathbf{s}_{m}\right)=\frac{1}{M}$, MAP criterion becomes choose m such that $\left\{f\left(\mathbf{y} \mid \mathbf{s}_{m}\right)\right\}_{m=1}^{M}$ is maximum
- which is called "maximum likelihood (ML)" criterion.
- Definition
- likelihood function: $f\left(\mathbf{y} \mid \mathbf{s}_{m}\right)$
- Log-likelihood function: $\ln f\left(\mathbf{y} \mid \mathbf{s}_{m}\right)$
- MAP criterion
choose m such that $\left\{P\left(\mathbf{s}_{m} \mid \mathbf{y}\right)\right\}_{m=1}^{M}$ is maximum $=$ choose m such that $\left\{\frac{f\left(\mathbf{y} \mid \mathbf{s}_{m}\right) P\left(\mathbf{s}_{m}\right)}{f(\mathbf{y})}\right\}_{m=1}^{M}$ is maximum for equally probable case $=>\quad=$ choose m such that $f\left(\mathbf{y} \mid \mathbf{s}_{m}\right)$ $=$ choose m such that $\ln f\left(\mathbf{y} \mid \mathbf{s}_{m}\right)$

Likelihood function

$$
f\left(y \mid s_{m}\right)=\frac{1}{\sqrt{\pi N_{0}}} e^{-\left(y-s_{m}\right)^{2} / N_{0}}, \quad m=1,2, \ldots, M
$$

Log-Likelihood function

$$
\ln f\left(y \mid s_{m}\right)=-\frac{1}{2} \log \left(\pi N_{0}\right)-\frac{\left(y-s_{m}\right)^{2}}{N_{0}}, \quad m=1,2, \ldots, M
$$

ML criterion

$$
\begin{gathered}
\max _{m}\left[-\frac{1}{2} \log \left(\pi N_{0}\right)-\frac{\left(y-s_{m}\right)^{2}}{N_{0}}\right], \quad m=1,2, \ldots, M \\
=\max _{m}\left[-\frac{\left(y-s_{m}\right)^{2}}{N_{0}}\right], \quad m=1,2, \ldots, M \\
=\min _{m}\left[\left(y-s_{m}\right)^{2}\right], \quad m=1,2, \ldots, M \\
=\min _{m}\left\|y-s_{m}\right\|, \quad m=1,2, \ldots, M
\end{gathered}
$$

- Generally, the output of the demodulator over AWGN channel can be written as

$$
y_{k}=s_{m k}+n_{k}, \quad k=1,2, \ldots \widehat{d i m e n s i o n ~}_{N}
$$

- Its likelihood function is given as

$$
f\left(y_{k} \mid s_{m k}\right)=\frac{1}{\sqrt{\pi N_{0}}} e^{-\left(y-s_{m k}\right)^{2} / N_{0}}, \quad m=1,2, \ldots, M
$$

- Joint likelihood function

$$
f\left(\mathbf{y} \mid \mathbf{s}_{m}\right)=\frac{1}{\left(\pi N_{0}\right)^{N / 2}} e^{-\sum_{k=1}^{N}\left(y-s_{m k}\right)^{2} / N_{0}}, \quad m=1,2, \ldots, M
$$

Log-likelihood function

$$
\ln f\left(\mathbf{y} \mid \mathbf{s}_{m}\right)=-\frac{N}{2} \ln \left(\pi N_{0}\right)-\ln \sum_{k=1}^{N} \frac{\left(y-s_{m k}\right)^{2}}{N_{0}}, \quad m=1,2, \ldots, M
$$

ML criterion

$$
\min _{m}\left(y-s_{m k}\right)^{2}, \quad m=1,2, \ldots, M
$$

- which is called minimum (Euclidean) distance rule
- Optimum decision rule
- MAP criterion becomes ML criterion for equally probable case.
- ML criterion can be reduced to minimum Euclidean distance rule over AWGN channels.
- Calculation of Euclidean distance

$$
\begin{aligned}
D\left(\mathbf{y}, \mathbf{s}_{m}\right) & =\sum_{n=1}^{N} y_{n}^{2}-2 \sum_{n=1}^{N} y_{n} s_{m n}+\sum_{n=1}^{N} s_{m n}^{2} \\
& =\|\mathbf{y}\|^{2}-2 \mathbf{y} \cdot \mathbf{s}_{m}+\left\|\mathbf{s}_{m}\right\|^{2}, \quad m=1,2, \ldots, M
\end{aligned}
$$

- Minimum distance rule choose \mathbf{s}_{m} to give the minimum distance metric which is equivalent to choose minimum value of the metric given as

$$
D^{\prime}\left(\mathbf{y}, \mathbf{s}_{m}\right)=-2 \mathbf{y} \cdot \mathbf{s}_{m}+\left\|\mathbf{s}_{m}\right\|^{2}, \quad m=1,2, \ldots, M
$$

or choose the maximum distance metric given as

$$
C\left(\mathbf{y}, \mathbf{s}_{m}\right)=2 \mathbf{y} \cdot \mathbf{s}_{m}-\left\|\mathbf{s}_{m}\right\|^{2}, \quad m=1,2, \ldots, M
$$

- Correlation metric

$$
C\left(\mathbf{y}, \mathbf{s}_{m}\right)=2 \mathbf{y} \cdot \mathbf{s}_{m}-\left\|\mathbf{s}_{m}\right\|^{2}, \quad m=1,2, \ldots, M
$$

- We choose s_{m} which gives maximum correlation metric.

If all the signals have equal energy, that is, $\left\|\mathbf{s}_{m}\right\|^{2}=\mathcal{E}_{s}$, for all m

- we can just neglect the term $\left\|\mathbf{s}_{m}\right\|^{2}$.

Summary of Optimum Decision Rule

- Optimum decision rule is MAP criterion.
- MAP criterion is equivalent to ML criterion for equally probable case.
- ML criterion is equivalent to minimum Euclidean distance rule over AWGN channels.
- Minimum Euclidean distance rule is equivalent to maximum correlation rule.

Probability of Error for M-ary Pulse Amplitude Modulation

Bit error rate of binary PAM signals

$$
P_{2}=Q\left(\sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right)
$$

$$
d_{12}=2 \sqrt{\mathcal{E}_{b}} \Longrightarrow \mathcal{E}_{b}=\frac{d_{12}^{2}}{4}
$$

We can rewrite the BER of binary PAM signals as

$$
P_{2}=Q\left(\sqrt{\frac{d_{12}^{2}}{2 N_{0}}}\right)
$$

- In the case of M-ary PAM, the input to the detector is

$$
y=s_{m}+n
$$

Optimum decision rule for equally probable case chooses the maximum correlation metrics

$$
C\left(y, s_{m}\right)=2 y s_{m}-s_{m}^{2}=2\left(y-s_{m} / 2\right) s_{m}
$$

Equivalently, the optimum threshold may compare y with a set of M-1 thresholds, which are placed at the midpoints of successive amplitude levels. Thus, a decision is made in favor of the amplitude level that is closest to y.

Average symbol error rate

$$
\begin{aligned}
P_{M} & =\frac{1}{M}\left[\operatorname{Pr}\left(y-s_{1}>d\right)+\operatorname{Pr}\left(\left|y-s_{2}\right|>d+\cdots+\operatorname{Pr}\left(\left|y-s_{M-1}\right|>d\right)+\operatorname{Pr}\left(y-s_{M}<-d\right)\right]\right. \\
& =\frac{M-1}{M} \operatorname{Pr}\left(\left|y-s_{m}\right|>d\right) \\
& =\frac{M-1}{M} \frac{2}{\sqrt{\pi N_{0}}} \int_{d}^{\infty} e^{-x^{2} / N_{0}} d x \\
& =\frac{M-1}{M} \frac{2}{\sqrt{2 \pi}} \int_{\sqrt{2 d^{2} / N_{0}}}^{\infty} e^{-x^{2} / 2} d x \\
& =\frac{2(M-1)}{M} Q\left(\sqrt{2 d^{2} / N_{0}}\right)
\end{aligned}
$$

- Recall

$$
\mathcal{E}_{a v}=\frac{d^{2}\left(M^{2}-1\right)}{3}
$$

We can rewrite the average symbol error rate as

$$
P_{M}=\frac{2(M-1)}{M} Q\left(\sqrt{\frac{6 \mathcal{E}_{a v}}{\left(M^{2}-1\right) N_{0}}}\right) .
$$

Note that each signal carries $k=\log _{2} M$ bits of information, the average energy per bit is

$$
\mathcal{E}_{b a v}=\frac{\mathcal{E}_{a v}}{k} \Longrightarrow \mathcal{E}_{a v}=k \mathcal{E}_{b a v}=\left(\log _{2} M\right) \mathcal{E}_{b a v}
$$

Hence, we have

$$
P_{M}=\frac{2(M-1)}{M} Q\left(\sqrt{\frac{6\left(\log _{2} M\right) \mathcal{E}_{\text {bav }}}{\left(M^{2}-1\right) N_{0}}}\right) .
$$

Average SER curve

Probability of Error for M-ary Orthogonal Signals

Each of M-ary orthogonal signals has equal energy.

- For equal energy orthogonal signals, the optimum detector selects the signal resulting in the largest cross correlation between the received vector \mathbf{y} and each of the M possible transmitted signal vectors $\left\{\mathbf{s}_{m}\right\}$, i.e.,

$$
C\left(y, \mathbf{s}_{m}\right)=\mathbf{y} \cdot \mathbf{s}_{m}=\sum_{k=1}^{M} y_{k} s_{m k}, \quad m=1,2, \ldots, M
$$

- To evaluate the probability of error, let us assume that the signal s_{1} is transmitted. Then the vector at the input to the detector is

$$
\mathbf{y}=\left(\sqrt{\mathrm{E}_{s}}+n_{1}, n_{2}, n_{3}, \ldots, n_{M}\right)
$$

where $n_{1}, n_{2}, n_{3}, \ldots, n_{M}$ are zero mean, mutually statistically independent Gaussian random variables with equal variance $N_{0} / 2$.

- Cross-correlation metric

$$
\begin{aligned}
C\left(\mathbf{y}, \mathbf{s}_{1}\right) & =\sqrt{\mathcal{E}_{s}}\left(\sqrt{\mathcal{E}_{s}}+n_{1}\right) \\
C\left(\mathbf{y}, \mathbf{s}_{2}\right) & =\sqrt{\mathcal{E}_{s}} n_{2} \\
& \vdots \\
C\left(\mathbf{y}, \mathbf{s}_{M}\right) & =\sqrt{\mathcal{E}_{s}} n_{M}
\end{aligned}
$$

- Note that we can eliminate the scale factor $\sqrt{\mathcal{E}_{s}}$ for the comparisons.
- PDF of the first correlator output with the elimination of $\sqrt{\mathcal{E}_{s}}$.

$$
f\left(y_{1}\right)=\frac{1}{\sqrt{\pi N_{0}}} e^{-\frac{\left(y_{1}-\sqrt{\varepsilon_{s}}\right)^{2}}{N_{0}}}
$$

PDF's of the other M-1 correlator outputs

$$
f\left(y_{m}\right)=\frac{1}{\sqrt{\pi N_{0}}} e^{-\frac{y_{m}^{2}}{N_{0}}}, \quad m=2,3, \ldots, M
$$

- Correct decision probability when $s_{1}(t)$ is transmitted

$$
P_{c \mid s_{1}}=\int_{-\infty}^{\infty} \operatorname{Pr}\left[n_{2}<y_{1}, n_{3}<y_{1}, \ldots, n_{M}<y_{1} \mid s_{1}\right] f_{y_{1}}\left(y_{1}\right) d y_{1}
$$

For equally probable case,

$$
P_{c}=\int_{-\infty}^{\infty} \operatorname{Pr}\left(n_{2}<y_{1}, n_{3}<y_{1}, \ldots, n_{M}<y_{1} \mid y_{1}\right) f_{y_{1}}\left(y_{1}\right) d y_{1}
$$

Note that

$$
\begin{aligned}
\operatorname{Pr}\left(n_{M}<y_{1} \mid y_{1}\right) & =\int_{-\infty}^{y_{1}} f\left(y_{m}\right) d y_{m}, \quad m=2,3, \ldots, M \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\frac{\sqrt{22_{1}^{2}}}{N_{0}}} e^{-\frac{y_{m}^{2}}{2}} d y_{m} \\
& =1-Q\left(\sqrt{\frac{2 y_{1}^{2}}{N_{0}}}\right) .
\end{aligned}
$$

Probability of correct decision

$$
P_{c}=\int_{-\infty}^{\infty}\left[1-Q\left(\sqrt{\frac{2 y_{1}^{2}}{N_{0}}}\right)\right]^{M-1} f_{y_{1}}\left(y_{1}\right) d y_{1}
$$

- Probability of symbol error (Symbol error rate)

$$
P_{M}=1-\int_{-\infty}^{\infty}\left[1-Q\left(\sqrt{\frac{2 y_{1}^{2}}{N_{0}}}\right)\right]^{M-1} \frac{1}{\sqrt{\pi N_{0}}} e^{-\left(y-\sqrt{\mathcal{E}_{s}}\right)^{2} / N_{0}} d y_{1}
$$

Change of variable $\quad x=\frac{2 y_{1}^{2}}{N_{0}}$
Then we have

$$
\begin{aligned}
P_{M} & =1-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}[1-Q(x)]^{M-1} e^{-\left(x-\sqrt{2 \mathcal{E}_{s} / N_{0}}\right)} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left\{1-[1-Q(x)]^{M-1}\right\} e^{-\left(x-\sqrt{2 \mathcal{E}_{s} / N_{0}}\right)} d x
\end{aligned}
$$

Average bit error rarte

$$
P_{b}=\frac{1}{k} \sum_{n=1}^{k} n\binom{n}{k} \frac{P_{M}}{2^{k}-1}=\frac{2^{k-1}}{2^{k}-1} P_{M} \quad \approx \frac{P_{M}}{2}, \quad k \gg 1 .
$$

