

LECTURE 17

Soo-Won Kim

swkim@korea.ac.kr

18. Oversampling Converters

- **18.1 Oversampling without Noise Shaping**
- 18.2 Oversampling with Noise Shaping
- **18.3 System Architecture**
- **18.4 Digital Decimation Filters**
- **18.5 Higher-Order Modulators**
- **18.6 Bandpass Oversampling Converters**
- **18.7 Practical Considerations**
- **18.8 Multi-Bit Oversampling Converters**
- **18.9 Third-Order A/D Design Example**

SQNR = Best possible SNR(signal to noise ratio)

Quantization Noise Modeling

Oversampling Advantages

Oversampling occurs when $f_s > 2f_0$ Nyquist-rate $f_s = 2f_0$

(Signal of interest = f_0 , Sampling frequency = f_s)

Oversampling ratio, $OSR \equiv \frac{f_s}{2f_0}$ (18.8) \rightarrow Every doubling of OSR, SNR improves by 3dB. (ex) $OSR=4 \rightarrow + 6.02dB$ y₁(n) ___**→** г H(f) \longrightarrow $y_2(n)$ u(n) N-bit quantizer Filter eliminates quantization noise greater than f_0 $k_{x} = \left(\frac{\Delta}{\sqrt{12}}\right) \sqrt{\frac{1}{f}} \qquad (18.2)$ 5<u>S.((f)</u> T_S ↑ fs f -f. CO f.

Oversampling Advantages

Input signal power,

$$P_{s} = \left(\frac{V_{FS}}{2\sqrt{2}}\right)^{2} = \frac{V_{FS}^{2}}{8} = \frac{\Delta^{2}2^{2N}}{8} \quad (18.9)$$

(assume, sin wave of peak-to-peak V_{FS}) $(V_{FS} = \Delta 2^N)$

Quantization noise power of input signal,

$$P_{e} = \int_{-f_{s}/2}^{f_{s}/2} S_{e}^{2}(f) |H(f)|^{2} df = \int_{-f_{0}}^{f_{0}} k_{x}^{2} df = \frac{2f_{0}}{f_{s}} \frac{\Delta^{2}}{12} = \frac{\Delta^{2}}{12} \left(\frac{1}{OSR}\right) (18.10)$$

$$k_{x} = \left(\frac{\Delta}{\sqrt{12}}\right) \sqrt{\frac{1}{f_{s}}} (18.2)$$
$$OSR \equiv \frac{f_{s}}{2f_{0}} (18.8)$$

OSR ↑ (sampling frequency ↑), Quantization noise power ↓

Maximum SQNR

$$SQNR_{max} = 10\log\left(\frac{P_s}{P_e}\right) = 10\log\left(\frac{3}{2}2^{2N}\right) + 10\log(OSR) \quad (18.11)$$
$$= 6.02N + 1.76 + 10\log(OSR) \quad (18.12)$$

3 dB/octave or equivalently 0.5 bits/octave

Example

A 13-bit quantizer has an input frequency of 2MHz. Compare the SQNR if

- 1) Nyquist-rate ($f_s = 4MHz$)
- 2) Oversampling ($f_s = 16MHz$)

Input signal frequency f₀ = 2MHz OSR = 4

Nyquist-rate

$$SQNR = 20 \log \left(\frac{V_{in(rms)}}{V_{Q(rms)}} \right)$$
$$= 20 \log \left(\frac{V_{ref} / 2\sqrt{2}}{V_{LSB} / \sqrt{12}} \right)$$
$$= 6.02N + 1.76 \text{ dB}$$
$$= 80.02$$

Oversampling

$$SQNR = 10 \log\left(\frac{P_s}{P_e}\right)$$
$$= 10 \log\left(\frac{3}{2}2^{2N}\right) + 10 \log(OSR)$$
$$= 6.02N + 1.76 + 10 \log(OSR)$$
$$= 86.04$$

Oversampling improves overall SNR by 10log(OSR)

18. Oversampling Converters

- **18.1 Oversampling without Noise Shaping**
- 18.2 Oversampling with Noise Shaping
- **18.3 System Architecture**
- **18.4 Digital Decimation Filters**
- **18.5 Higher-Order Modulators**
- **18.6 Bandpass Oversampling Converters**
- **18.7 Practical Considerations**
- **18.8 Multi-Bit Oversampling Converters**
- **18.9 Third-Order A/D Design Example**

Delta-Sigma A/D converter system

Fig. 18.4 Block diagram of an oversampling A/D converter

Low input frequency bandwidth, high accuracy

Low conversion rate

Oversampling with Noise Shaping

Signal / Noise transfer function

Noise-Shaped Delta-Sigma Modulator

Fig. 18.5 A general $\Delta\Sigma$ modulator and its linear model.

Signal and Noise Transfer-Functions

$$Y(z) = \{U(z) - Y(z)\}H(z)$$
$$S_{TF}(z) \equiv \frac{Y(z)}{U(z)} = \frac{H(z)}{1 + H(z)}$$
(18.18)

$$Y(z) = E(z) - Y(z)H(z)$$
$$N_{TF}(z) \equiv \frac{Y(z)}{E(z)} = \frac{1}{1 + H(z)}$$
(18.19)

 $Y(z) \equiv S_{TF}(z)U(z) + N_{TF}(z)E(z) \quad (18.20)$

Modulator pushes noise power out of the signal bandwidth

Noise Shaping

Integrator, H(z)

$$S_{TF}(z) \equiv \frac{Y(z)}{U(z)} = \frac{H(z)}{1+H(z)}$$
 LPF

$$N_{TF}(z) \equiv \frac{Y(z)}{E(z)} = \frac{1}{1+H(z)} HPF$$

참고
Delay =
$$z^{-1}$$

n-th order $LPF = \frac{1}{(1 - z^{-1})^{N}}$
n-th order $HPF = (1 - z^{-1})^{N}$

$$S_{TF}(z) \equiv \frac{Y(z)}{U(z)} = \frac{H(z)}{1 + H(z)} = \frac{1}{1 - z^{-1}}$$
$$\rightarrow 1 + \frac{1}{H(z)} = 1 - z^{-1}$$
$$H(z) = -z$$

$$N_{TF}(z) \equiv \frac{Y(z)}{E(z)} = \frac{1}{1 + H(z)} = 1 - z^{-1}$$

$$\rightarrow 1 + H(z) = \frac{1}{1 - z^{-1}}$$

$$H(z) = \frac{z^{-1}}{1 - z^{-1}}$$

Integrator, H(z)

$$S_{TF}(z) \equiv \frac{Y(z)}{U(z)} = \frac{H(z)}{1 + H(z)} LPF$$

$$N_{TF}(z) \equiv \frac{Y(z)}{E(z)} = \frac{1}{1 + H(z)} HPF$$

참고
Delay =
$$z^{-1}$$

n-th order $LPF = \frac{1}{(1 - z^{-1})^{N}}$
n-th order $HPF = (1 - z^{-1})^{N}$

Fig. 18.6 A first-order noise-shaped interpolative modulator

Time domain View

- ✓ Average value of integrator input v(n) = 0 (i.e., average value of u(n) y(n) = 0)
- ✓ Average value of $u(n) \approx$ average value of y(n)

Frequency Domain View

Fig. 18.6 A first-order noise-shaped interpolative modulator

1 <u>_</u> (18.2) $k_x = |$ -

Signal and Noise Transfer-Functions

$$S_{TF}(z) \equiv \frac{Y(z)}{U(z)} = \frac{1/(z-1)}{1+1/(z-1)} = z^{-1} \quad (18.22)$$
$$N_{TF}(z) \equiv \frac{Y(z)}{E(z)} = \frac{1}{1+1/(z-1)} = (1-z^{-1}) \quad (18.23)$$

Calculation of SQNR to fine the enhancement by Noise shaping, $(z = e^{jwT} = e^{j2\pi f/f_s})$

$$N_{TF}(f) = 1 - e^{-j2\pi f/f_{s}} = \frac{e^{j\pi f/f_{s}} - e^{-j\pi f/f_{s}}}{2j} \times 2j \times e^{-j\pi f/f_{s}} = \sin\left(\frac{\pi f}{f_{s}}\right) \times 2j \times e^{-j\pi f/f_{s}} \quad (18.24)$$

$$P_{e} = \int_{-f_{0}}^{f_{0}} S_{e}^{2}(f) \left| N_{TF}(f) \right|^{2} df = \int_{-f_{0}}^{f_{0}} \left(\frac{\Delta^{2}}{12}\right) \frac{1}{f_{s}} \left[2\sin\left(\frac{\pi f}{f_{s}}\right) \right]^{2} df \cong \frac{\Delta^{2}\pi^{2}}{36} \left(\frac{1}{OSR}\right)^{2} \quad (18.27)$$

$$SQNR_{max} = 10 \log\left(\frac{P_{s}}{P_{e}}\right) = 10 \log\left(\frac{3}{2}2^{2N}\right) + 10 \log\left[\frac{3}{\pi^{2}}(OSR)^{3}\right] \quad (18.28)$$

$$= 6.02N + 1.76 - 5.17 + 30 \log(OSR)$$

Oversampling without noise shaping

$$SQNR_{max} = 6.02N + 1.76 + 10\log(OSR)$$
 (18.12)

Oversampling with noise shaping

$$SQNR_{max} = 6.02N + 1.76 - 5.17 + 30\log(OSR)$$
 (18.29)

Switched-Capacitor Realization of a First-Order A/D Converter

Fig. 18.7 First-order A/D modulator : (a) block diagram; (b) switchedcapacitor implementation

 $V_{out} = High \rightarrow Subtracted V_{in} - V_{ref}$

Operation of First-Order Modulation

$$V_{out} = High \rightarrow Added V_{in} + V_{ref}$$

Fig. 18.6 A first-order noise-shaped interpolative modulator

Time domain View

- ✓ Average value of integrator input = 0 (i.e., average value of u(n) y(n) = 0)
- ✓ Average value of $u(n) \approx$ average value of y(n)

First-order Δ -**\Sigma ADC** Input = 0.82

First-order Δ -**\Sigma ADC** Input = 0.82

First-order Δ -**\Sigma ADC** Input = 0.82

Digital filter \rightarrow 0.8125 (-0.0075)

High-order Noise Shaping

High-order Noise Shaping

Fig. Comparison of resolution

> As order increases,

Noise ↓, Resolution ↑

😕 Sta

Delta-Sigma A/D converter system

Fig. 18.4 Block diagram of an oversampling A/D converter

- ✓ Anti-aliasing filter : 0.5·f_s 보다 높은 입력의 주파수 term들을 filtering 한다
- ✔ Decimation filter : f_s(high)로 처리한 출력을 f₀(low)으로 filtering 한다

Appendix : Input Signal Power Calculation

