
Computer Architecture

Instruction Set Architecture

Lynn Choi

Korea University

Machine Language

Programming language

High-level programming languages

Procedural languages: C, PASCAL, FORTRAN

Object-oriented languages: C++, Objective-C, Java

Functional languages: Lisp, Scheme

Assembly programming languages: symbolic machine languages

Machine languages: binary codes (1’s and 0’s)

Translator

Compiler

Translates high-level language programs into machine language programs

Assembler: a part of a compiler

Translates assembly language programs into machine language programs

Interpreter

Translates and executes programs directly

Examples: JVM(Java virtual machine): translate/execute Java bytecode to

native machine instructions

Compilation Process

Preprocessor

Compiler

Assembler

Loader/Linkage Editor

Source program

Expanded Source Program

Assembly Program

Relocatable code

Target program

Expands macros into the

source program

Libraries, relocatable

object files

Compiler

Compiler

A program that translates a source program (written in language A) into an
equivalent target program (written in language B)

Source program

Usually written in high-level programming languages (called source language)
such as C, C++, Java, FORTRAN

Target program

Usually written in machine languages (called target language) such as x86, Alpha,
MIPS, SPARC, or ARM instructions

What qualities do you want in a compiler?

Generate correct code

Target code runs fast

Compiler runs fast

Support for separate compilation, good diagnostics for errors

Compiler
Target

Program

Source

Program

Compiler Phases

I.C. : Intermediate Code

O.C. : Optimized Code

Source

Program

Object

Program

Lexical Analyzer

Syntax Analyzer

Intermediate

Code Generator

Code Optimizer

Target

Code Generator

Tokens

Tree

I.C.

O.C.

Compiler Structure

Source

Programs

Object

Programs

Front-End

Back-End

IC

 Front-End : language dependent part

 Back-End : machine dependent part

Machine State

ISA defines machine states and instructions

Registers

CPU internal storage to store data fetched from memory

Can be read or written in a single cycle

Arithmetic and logic operations are usually performed on registers

MIPS ISA has 32 32-bit registers: Each register consists of 32 flip-flops

Top level of the memory hierarchy

Registers <-> caches <-> memory <-> hard disk

Registers are visible to programmers and maintained by programmers

Caches are invisible to programmers and maintained by HW

Memory

A large, single dimensional array, starting at address 0

To access a data item in memory, an instruction must supply an address.

Store programs (which contains both instructions and data)

To transfer data, use load (memory to register) and store (register to memory)

instructions

Data Size & Alignment

Data size

Word : the basic unit of data transferred between register and memory

32b for 32b ISA, 64b for 64b ISA

Double word: 64b data, Half word: 16b data, Byte: 8b data

Load/store instructions can designate data sizes transferred: ldw, lddw, ldhw,

ldb

Byte addressability

Each byte has an address

Alignment

Objects must start at addresses that are multiple of their size

Object addressed Aligned addresses Misaligned addresses

Byte 0, 1, 2, 3, 4, 5, 6, 7 Never

Half Word 0, 2, 4, 6 1, 3, 5, 7

Word 0, 4 1, 2, 3, 5, 6, 7

Double Word 0 1, 2, 3, 4, 5, 6, 7

Machine Instruction

Opcode : specifies the operation to be performed

EX) ADD, MULT, LOAD, STORE, JUMP

Operands : specifies the location of data

Source operands (input data)

Destination operands (output data)

The location can be

Memory specified by a memory address : EX) 8(R2), x1004F

Register specified by a register number : R1

Instruction Types

Arithmetic and logic instructions

Performs actual computation on operands

EX) ADD, MULT, SHIFT, FDIVIDE, FADD

Data transfer instructions (memory instructions)

Move data from/to memory to/from registers

EX) LOAD, STORE

Input/Output instructions are usually implemented by memory instructions

(memory-mapped IO)

IO devices are mapped to memory address space

Control transfer instructions (branch instructions)

Change the program control flow

Specifies the next instruction to be fetched

Unconditional jumps and conditional branches

EX) JUMP, CALL, RETURN, BEQ

Instruction Format

Op: Opcode, basic operation of the instruction

Rs: 1st source register

Rt: 2nd source register

Rd: destination register

shamt: shift amount

funct: Function code, the specific variant of the opcode

Used for arithmetic/logic instructions

Rs: base register

Address: +/- 215 bytes offset (or also called displacement)

Used for loads/stores and conditional branches

op rs rt rd shamt funct

op rs rt address

6 5 5 5 5 6

6 5 5 16

R-type

I-type

MIPS Addressing Modes

Register addressing

Address is in a register

Jr $ra

Base addressing

Address is the sum of a register and a constant

Ldw $s0, 100($s1)

Immediate addressing

For constant operand

Add $t1, $t2, 3

PC-relative addressing

Address is the sum of PC and a constant (offset)

Beq $s0, $s1, L1

Pseudodirect addressing

Address is the 26 bit offset concatenated with the upper bits of PC

J L1

MIPS Instruction formats

Arithmetic instructions

Data transfer, conditional branch, immediate format instructions

Jump instructions

op rs rt rd shamt funct
6 5 5 5 5 6

R-type

op rs rt address/immediate

6 5 5 16 I-type

op address

6 26 J-type

MIPS Instruction Example: R-format

MIPS Instruction:

add $8,$9,$10

0 9 10 8 32 0

Binary number per field representation:

 Called a Machine Language Instruction

Decimal number per field representation:

hex representation: 012A 4020hex

decimal representation: 19,546,144ten

000000 01001 01010 01000 100000 00000
hex

Elsevier Inc. All rights reserved

MIPS Instruction Opcode Table

Elsevier Inc. All rights reserved

Elsevier Inc. All rights reserved

Procedure Call & Return

Steps of procedure call & return

Place parameters in a place where the callee can access

$a0 - $a3: four argument registers

Transfer control to the callee

Jal callee_address : Jump and link instruction

put return address (PC+4) in $ra and jump to the callee

Acquire the storage needed for the callee

Perform the desired task

Place the result value in a place where the caller can access

$v0 - $v1: two value registers to return values

Return control to the caller

Jr $ra

Stack

Stack frame (activation record) of a procedure

Store variables local to a procedure

Procedure’s saved registers (arguments, return address, saved registers,

local variables)

Stack pointer : points to the top of the stack

Frame pointer : points to the first word of the stack frame

Elsevier Inc. All rights reserved

MIPS Memory Allocation

Elsevier Inc. All rights reserved

MIPS Register Convention

Elsevier Inc. All rights reserved

MIPS Example : Procedure

int leaf_example (int g, int h, int i, int j)

{ int f;

 f = (g + h) – (i + j);

 return f;}

Assembly code

leaf_example:

 sub $sp, $sp, 8

 sw $t1, 4($sp) # save register $t1, $t0 onto stack

 sw $t0, 0($sp)

 add $t0, $a0, $a1 # $t0 = g + h

 add $t1, $a2, $a3 # $t1 = i + j

 sub $v0, $t0, $t1 # $v0 = (g + h) – (i + j)

 lw $t0, 0($sp) # restore $t0, $t1 for caller

 lw $t1, 4($sp)

 add $sp, $sp, 8

 jr $ra

Elsevier Inc. All rights reserved

MIPS Example : Recursion

Int fact (int n)

{ if (n <2) return 1;

 else return n * fact (n – 1); }

Assembly code
fact: addi $sp, $sp, -8 # adjust stack pointer for 2 items

 sw $ra, 4($sp) # save return address and argument n

 sw $a0, 0($sp)

 slt $t0, $a0, 2 # if n < 2, then $t0 = 1

 beq $t0, $zero, L1 # if n >=2, go to L1

 addi $v0, $zero, 1 # return 1

 addi $sp, $sp, 8 # pop 2 items off stack

 jr $ra

L1: addi $a0, $a0, -1 # $a0 = n - 1

 jal fact # call fact(n – 1)

 lw $a0, 0($sp) # pop argument n and return address

 lw $ra, 4($sp)

 addi $sp, $sp, 8 #

 mul $v0, $a0, $v0 # return n * fact(n – 1)

 jr $ra

Homework 2

Read Chapter 7 (from Computer Systems textbook)

Exercise

2.2

2.4

2.5

2.8

2.12

2.19

2.27

