Communication Signals

(Haykin Sec. 2.4 and Ziemer Sec.2. I.4-Sec. 2.4) KECE321 Communication Systems I

Lecture \#3, March 12, 2011 Prof. Young-Chai Ko

Review

- Signal classification
- Phasor signal and spectra
- Representation of sinusoidal function in terms of phasor signals
- Amplitude and phase spectra
- which gives the dual time-frequency nature of sinusoidal signals

Summary of Today's Lecture

- Singular functions
- Unit step function
- Unit impulse function (Dirac delta function)
- Signum function
- Fourier series
- Generalized Fourier series
- Complex Fourier series

Unit Step Function

- Definition

$$
u(t)= \begin{cases}1, & t>0 \\ 0, & t<0\end{cases}
$$

- Shifted unit step function

$$
u\left(t-t_{0}\right)= \begin{cases}1, & t>t_{0} \\ 0, & t<t_{0}\end{cases}
$$

(a)

(b)

Unit Impulse Function (Dirac Delta Function)

- Rectangular pulse
$\operatorname{rect}\left(\frac{t}{T}\right)= \begin{cases}1, & -\frac{T}{2}<t<\frac{T}{2} \\ 0, & \text { elsewhere }\end{cases}$

- Consider the rectangular pulse given as

$$
g(t)=\frac{1}{2 \epsilon} \operatorname{rect}\left(\frac{t}{2 \epsilon}\right)
$$

- Now consider $\lim _{\epsilon \rightarrow 0} g(t)$ in which case the area is still 1 .

- Also consider the Gaussian pulse given as

$$
g(t)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right)
$$

- We can prove that $g(t)$ has a unit area, that is, $\int_{t=-\infty}^{\infty} g(t) d t=1$
- Now if we take $\sigma^{2} \rightarrow 0, g(t)$ is in narrower gaussian pulse shape

- We define Dirac delta function as a function which has the property of $\lim _{\epsilon \rightarrow 0} g(t)$ (or $\lim _{\sigma^{2} \rightarrow 0} g(t)$ in the Gaussian pulse) and denote it as $\delta(t)$.
- Definition of Dirac delta (or unit impulse) function

$$
\int_{-\infty}^{\infty} x(t) \delta(t) d t=x(0) \quad \text { or } \quad \int_{-\infty}^{\infty} x(t) \delta\left(t-t_{0}\right) d t=x\left(t_{0}\right)
$$

where $x(t)$ is any continuous function at time $t=0$
where $x(t)$ is any continuous function at time $t=t_{0}$

- By considering the special case $x(t)=1$ and $x(t)=0$ for $t<t_{1}$ and $t>t_{2}$, the following two properties are obtained:

$$
\begin{gathered}
\int_{t_{1}}^{t_{2}} \delta\left(t-t_{0}\right) d t=1, \quad t_{1}<t<t_{2} \\
\text { and } \\
\delta\left(t-t_{0}\right)=0, \quad t \neq t_{0}
\end{gathered}
$$

- Some properties of the delta function

1. $\delta(a t)=\frac{1}{|a|} \delta(t)$
2. $\delta(-t)=\delta(t)$
3.

$$
\int_{t_{1}}^{t_{2}} x(t) \delta\left(t-t_{0}\right) d t= \begin{cases}x\left(t_{0}\right), & t_{1}<t<t_{0} \\ 0, & \text { otherwise } \\ \text { undefined } & \text { for } t_{0}=t_{1} \text { or } t_{2}\end{cases}
$$

4. $x(t) \delta\left(t-t_{0}\right)=x\left(t_{0}\right) \delta\left(t-t_{0}\right), x(t)$ continuous at $t=t_{0}$

Signum (or Sign) Function

- Definition

$$
\operatorname{sgn}(t)= \begin{cases}+1, & t>0 \\ 0, & t=0 \\ -1, & t<0\end{cases}
$$

- Odd-symmetric double exponential pulse

$$
g(t)= \begin{cases}\exp (-a t), & t>0 \\ 0, & t=0 \\ \exp (a t), & t<0\end{cases}
$$

- We can derive the signum function from the odd-symmetric double-exponential function such as

$$
\lim _{a \rightarrow 0} g(t)=\operatorname{sgn}(t)
$$

J. Fourier

- Joseph Fourier
- was born in Auxerre, France on March 21, 1768 and died in Paris on May 4, 1830.
- was a French mathematician and physicist best known for initiating the investigation of Fourier series and their applications to problems to heat transfer and vibration.
- The Fourier transform and Fourier's Law are also named in his honor.
- Fourier is also generally credited with the discovery of the greenhouse effect.
- Detailed biography can be found at http://en.wikipedia.org/wiki/ Joseph_Fourier.

Fourier's Insight

- Fourier's insight was that (under certain circumstances), one can write a series expansion for a 2π-peiiodic function in terms of sines and cosines.
- Then it was proved that any periodic signal can be converged to the sum of orthogonal sines and cosines (or exponential) functions.

Generalized Fourier Series

- Generalized Fourier series:
- representation of signals as a series of orthogonal functions
- Recall the vector space:
- Given any vector A in three-dimensional space can be expressed in terms of three vectors \mathbf{x}, \mathbf{y}, and \mathbf{z} that do not all lie in the sample plane

$$
\mathbf{A}=A_{1} \mathbf{x}+A_{2} \mathbf{y}+A_{3} \mathbf{z}
$$

- where A_{1}, A_{2}, and A_{3} are appropriately chosen constants.
- The vectors \mathbf{x}, \mathbf{y}, and \mathbf{z} are said to be linearly independent since no one of them can be expressed as a linear combination of the other two. For example, it is impossible to write $\mathbf{x}=\alpha \mathbf{y}+\beta \mathbf{z}$, no matter what choice is made for the constants α and β
- Such a set of linearly independent vectors is said to form a basis set for a threedimensional vector space. Such vectors span a three-dimensional vector space in the sense that any vector A can be expressed as a linear combination of them.
- Similarly, consider the problem of representing a time function, or signal, $x(t)$ on a T-second interval $\left(t_{0}, t_{0}+T\right)$, as a similar expansion.
- We consider a set of time functions $\phi_{1}(t), \phi_{2}(t), \cdots, \phi_{N}(t)$, which are specified independently of $x(t)$, and seek a series expansion of the form

$$
x_{a}(t)=\sum_{n=1}^{N} X_{n} \oint_{n}(t), \quad t_{0} \leq t \leq t_{0}+T
$$

the N coefficients X_{n} are independent of time and the subscript a indicates that $x_{a}(t)$ is considered an approximation.

- We assume that the $\phi_{n}(t)^{\prime}$ s are linearly independent; that is, no one of them can be expressed as a weighted sum of the other $N-1$. A set of linearly independent $\phi_{n}(t)^{\prime}$ s will be called a basis function set.
- We now wish to examine the error in the approximation of $x(t)$ by $x_{a}(t)$. As in the
 orthogonal on the interval $\left(t_{0}, t_{0}+T\right)$.
- That is,

$$
\int_{t_{0}}^{t_{0}+T} \phi_{m}(t) \phi_{n}^{*}(t) d t=c_{n} \delta_{n m} \triangleq\left\{\begin{array}{ll}
c_{n}, & n=m \\
0, & n \neq m
\end{array} \quad(\text { all } m \text { and } n)\right.
$$

where, if $c_{n}=1$ for all n, the $\phi_{n}(t)^{\prime}$ s are said to be normalized.

- A normalized orthogonal wet of functions is called on orthogonal basis set.
- $\delta_{m n}$ is called the Kronecker delta function, is defined as unity if $m=n$, and zero otherwise.
- The error in the approximation will be measured in the integral-square sense (ISE)

$$
\text { Error }=\epsilon_{N}=\int_{T}\left|x(t)-x_{a}(t)\right|^{2} d t
$$

where $\int_{T}() d t$ denotes the integration over t from t_{0} to $t_{0}+T$.

- The ISE is an applicable measure of error only when $x(t)$ is an energy signal or a power signal. If $x(t)$ is an energy signal of infinite duration, the limit as $T \rightarrow \infty$ is taken.
- We now find the set of coefficients X_{n} that minimizes the ISE. Substituting $x_{a}(t)$ into ISE, expressing the magnitude square of the integrand as the integrand times its complex conjugate and expanding, we obtain

$$
\begin{aligned}
\epsilon_{N}= & \int_{T}|x(t)|^{2} d t-\sum_{n=1}^{N}\left[X_{n}^{*} \int_{T} x(t) \phi_{n}^{*}(t) d t+X_{n} \int_{T} x^{*}(t) \phi_{n}(t) d t\right] \\
& +\sum_{n=1}^{N} c_{n}\left|X_{n}\right|^{2}
\end{aligned}
$$

- To find the X_{n} 's that minimizes ϵ_{N} we add and subtract the quantity

$$
\sum_{n=1}^{N} \frac{1}{c_{n}}\left|\int_{T} x(t) \phi_{n}^{*}(t) d t\right|^{2}
$$

which yields

$$
\epsilon_{N}=\int_{T}|x(t)|^{2} d t-\sum_{n=1}^{N} \frac{1}{c_{n}}\left|\int_{T} x(t) \phi_{n}^{*}(t) d t\right|^{2}+\sum_{n=1}^{N} c_{n}\left|X_{n}-\frac{1}{c_{n}} \int_{T} x(t) \phi_{n}^{*}(t) d t\right|^{2}
$$

- The first two terms on the right-hand side of ϵ_{N} are independent of the coefficients X_{n}. Since the last sum on the right-hand side is nonnegative, we will minimize ϵ_{N} if we choose each X_{n} such that the corresponding term in the sum is zero. Thus, since $c_{n}>0$, the choice of

$$
X_{n}=\frac{1}{c_{n}} \int_{T} x(t) \phi_{n}^{*}(t) d t
$$

for X_{n} minimizes the ISE.

- The resulting minimum-error coefficients will be referred to as the Fourier coefficients.
- Minimum value for ϵ_{n}

$$
\begin{aligned}
\left(\epsilon_{n}\right)_{\min } & =\int_{T}|x(t)|^{2} d t-\sum_{n=1}^{N} \frac{1}{c_{n}}\left|\int_{T} x(t) \phi_{n}^{*}(t) d t\right|^{2} \\
& =\int_{T}|x(t)|^{2} d t-\sum_{n=1}^{N} c_{n}\left|X_{n}\right|^{2}
\end{aligned}
$$

- If we can find an infinite set of orthonormal functions such that $\lim _{N \rightarrow \infty}\left(\epsilon_{N}\right)_{\text {min }}=0$ for any signal that is integrable square,

$$
\int_{T}|x(t)|^{2} d t<\infty
$$

we say that the $\phi_{n}(t)$'s are complete. In the sense that the ISE is zero, we may then write

$$
x(t)=\sum_{n=1}^{\infty} X_{n} \phi_{n}(t) \quad(\mathrm{ISE}=0)
$$

Assuming a complete orthogonal set of functions, we obtain the relation

$$
\int_{T}|x(t)|^{2} d t=\sum_{n=1}^{N} c_{n}\left|X_{n}\right|^{2}
$$

This equation is known as Parseval's theorem.

In general, equation $\lim _{N \rightarrow \infty}\left(\epsilon_{N}\right)_{\min }=0$ requires that $x(t)$ be equal to $x_{a}(t)$ as $N \rightarrow \infty$.

- Example, The signal $x(t)$ is to be approximated by a two-term generalized Fourier series

$$
x(t)= \begin{cases}\sin (\pi t), & 0 \leq t \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

- The Fourier coefficients are calculated as

$$
\begin{aligned}
& X_{1}=\int_{0}^{2} \phi_{1}(t) \sin (\pi t) d t=\int_{0}^{1} \sin (\pi t) d t=\frac{2}{\pi} \\
& X_{2}=\int_{0}^{2} \phi_{2}(t) \sin (\pi t) d t=\int_{1}^{2} \sin (\pi t) d t=-\frac{2}{\pi}
\end{aligned}
$$

- Thus the generalized two-term Fourier series approximation for this signal is

$$
x_{a}(t)=\frac{2}{\pi} \phi_{1}(t)-\frac{2}{\pi} \phi_{2}(t)=\frac{\pi}{2}\left[\operatorname{rect}\left(t-\frac{1}{2}\right)-\operatorname{rect}\left(t-\frac{3}{2}\right)\right]
$$

- Space interpretation

- Minimum ISE

$$
\left(\epsilon_{N}\right)_{\min }=\int_{0}^{2} \sin ^{2}(\pi t) d t-2\left(\frac{2}{\pi}\right)^{2}=1-\frac{8}{\pi^{2}} \approx 0.189
$$

Complex Exponential Fourier Series

- Consider a signal $x(t)$ defined over the interval $\left(t_{0}, t_{0}+T\right)$ with the definition

$$
\omega_{0}=2 \pi f_{0}=\frac{2 \pi}{T_{0}}
$$

we define the complex exponential Fourier series as

$$
x(t)=\sum_{n=-\infty}^{\infty} X_{n} e^{j n \omega_{0} t}, \quad t_{0} \leq t \leq t+0+T_{0}
$$

where

$$
X_{n}=\frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} x(t) e^{-j n \omega_{0} t} d t
$$

- It can be shown to represent the signal $x(t)$ exactly in the interval $\left(t_{0}, t_{0}+T_{0}\right)$, except at a point of jump discontinuity where it converges to the arithmetic mean of the left-hand and right-hand limits.
- Outside the interval $\left(t_{0}, t_{0}+T_{0}\right)$, nothing is guaranteed.
- However, we note that the right-hand side of the complex exponential Fourier series is period with period T_{0}, since it is the sum of periodic rotating phasors with harmonic frequencies.

If $x(t)$ is periodic with period T_{0}, the Fourier series is an accurate representation for $x(t)$ for all t (except at points of discontinuity).

- A useful observation about a complete orthonormal-series expansion of a signal is that the series is unique.
- For example, if we somehow find a Fourier expansion for a signal $x(t)$, we know that no other Fourier expansion for that $x(t)$ exists, since $\left\{e^{j n \omega_{0} t}\right\}$ forms a complete set.
- Example

Consider the signal $x(t)=\cos \left(\omega_{0} t\right)+\sin ^{2}\left(2 \omega_{0} t\right)$ where $\omega_{0}=2 \pi / T_{0}$. Find the complex exponential Fourier series.

Solution: Using trigonometric identities and Euler's theorem, we obtain

$$
\begin{aligned}
x(t) & =\cos \left(\omega_{0} t\right)+\frac{1}{2}-\frac{1}{2} \cos \left(4 \omega_{0} t\right) \\
& =\frac{1}{2} e^{j \omega_{0} t}+\frac{1}{2} e^{-j \omega_{0} t}+\frac{1}{2}-\frac{1}{4} e^{j \omega_{0} t}-\frac{1}{4} e^{-j \omega_{0} t}
\end{aligned}
$$

- Hence,

$$
\begin{aligned}
X_{0} & =\frac{1}{2} \\
X_{1} & =\frac{1}{2}=X_{-1} \\
X_{4} & =\frac{1}{4}=X_{-4}
\end{aligned}
$$

