Communication Signals

(Haykin Sec. 2.4 and Ziemer Sec.2.1.4-Sec. 2.4) KECE321 Communication Systems I

Lecture #3, March 12, 2011 Prof. Young-Chai Ko

Review

- Signal classification
- Phasor signal and spectra
 - Representation of sinusoidal function in terms of phasor signals
 - Amplitude and phase spectra
 - which gives the dual time-frequency nature of sinusoidal signals

Summary of Today's Lecture

- Singular functions
 - Unit step function
 - Unit impulse function (Dirac delta function)
 - Signum function
- Fourier series
 - Generalized Fourier series
 - Complex Fourier series

Unit Step Function

Definition

$$u(t) = \begin{cases} 1, & t > 0 \\ 0, & t < 0 \end{cases}$$

Shifted unit step function

$$u(t - t_0) = \begin{cases} 1, & t > t_0 \\ 0, & t < t_0 \end{cases}$$

Unit Impulse Function (Dirac Delta Function)

• Now consider $\lim_{\epsilon \to 0} g(t)$ in which case the area is still 1.

Also consider the Gaussian pulse given as

$$g(t) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{t^2}{2\sigma^2}\right)$$

- We can prove that g(t) has a unit area, that is, $\int_{t=-\infty}^{\infty} g(t) dt = 1$
- Now if we take $\sigma^2 \to 0$, g(t) is in narrower gaussian pulse shape

- We define *Dirac delta function* as a function which has the property of $\lim_{\epsilon \to 0} g(t)$ (or $\lim_{\sigma^2 \to 0} g(t)$ in the Gaussian pulse) and denote it as $\delta(t)$.
- Definition of Dirac delta (or unit impulse) function

$$\int_{-\infty}^{\infty} x(t)\delta(t) \, dt = x(0) \qquad \qquad \text{or}$$

where x(t) is any continuous function at time t = 0

 $\int_{-\infty}^{\infty} x(t)\delta(t-t_0) dt = x(t_0)$ where x(t) is any continuous function at time $t = t_0$

• By considering the special case x(t) = 1 and x(t) = 0 for $t < t_1$ and $t > t_2$, the following two properties are obtained:

$$\int_{t_1}^{t_2} \delta(t - t_0) \, dt = 1, \qquad t_1 < t < t_2$$

and

$$\delta(t-t_0) = 0, \quad t \neq t_0$$

Some properties of the delta function

1.
$$\delta(at) = \frac{1}{|a|}\delta(t)$$

2.
$$\delta(-t) = \delta(t)$$

3.

$$\int_{t_1}^{t_2} x(t)\delta(t-t_0) dt = \begin{cases} x(t_0), & t_1 < t < t_0 \\ 0, & \text{otherwise} \\ \text{undefined} & \text{for } t_0 = t_1 \text{ or } t_2 \end{cases}$$

4. $x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0), x(t)$ continuous at $t = t_0$

Signum (or Sign) Function

Definition

$$sgn(t) = \begin{cases} +1, & t > 0\\ 0, & t = 0\\ -1, & t < 0 \end{cases}$$

Odd-symmetric double exponential pulse

$$g(t) = \begin{cases} \exp(-at), & t > 0\\ 0, & t = 0\\ \exp(at), & t < 0 \end{cases}$$

We can derive the signum function from the odd-symmetric double-exponential function such as

$$\lim_{a \to 0} g(t) = sgn(t)$$

J. Fourier

- Joseph Fourier
 - was born in Auxerre, France on March 21, 1768 and died in Paris on May 4, 1830.
 - was a French mathematician and physicist best known for initiating the investigation of Fourier series and their applications to problems to heat transfer and vibration.
 - The Fourier transform and Fourier's Law are also named in his honor.
 - Fourier is also generally credited with the discovery of the greenhouse effect.
 - Detailed biography can be found at <u>http://en.wikipedia</u>.org/wiki/ Joseph_Fourier.

Fourier's Insight

- Fourier's insight was that (under certain circumstances), one can write a series expansion for a 2π periodic function in terms of sines and cosines.
- Then it was proved that any periodic signal can be converged to the sum of orthogonal sines and cosines (or exponential) functions.

Generalized Fourier Series

- Generalized Fourier series:
 - representation of signals as a series of orthogonal functions
- Recall the vector space:
 - Given any vector A in three-dimensional space can be expressed in terms of three vectors x, y, and z that do not all lie in the sample plane

$$\mathbf{A} = A_1 \mathbf{x} + A_2 \mathbf{y} + A_3 \mathbf{z}$$

- where A_1 , A_2 , and A_3 are appropriately chosen constants.
- The vectors \mathbf{x} , \mathbf{y} , and \mathbf{z} are said to be *linearly independent* since no one of them can be expressed as a linear combination of the other two. For example, it is impossible to write $\mathbf{x} = \alpha \mathbf{y} + \beta \mathbf{z}$, no matter what choice is made for the constants α and β
- Such a set of linearly independent vectors is said to form a *basis set* for a threedimensional vector space. Such vectors *span* a three-dimensional vector space in the sense that any vector A can be expressed as a linear combination of them.

- Similarly, consider the problem of representing a time function, or signal, x(t) on a *T*-second interval $(t_0, t_0 + T)$, as a similar expansion.
 - We consider a set of time functions $\phi_1(t)$, $\phi_2(t)$, \cdots , $\phi_N(t)$, which are specified independently of x(t), and seek a series expansion of the form

$$x_a(t) = \sum_{n=1}^{N} X_n \phi_n(t), \qquad t_0 \le t \le t_0 + T$$

independent of time

the N coefficients X_n are independent of time and the subscript a indicates that $x_a(t)$ is considered an approximation.

• We assume that the $\phi_n(t)$'s are linearly independent; that is, no one of them can be expressed as a weighted sum of the other N - 1. A set of linearly independent $\phi_n(t)$'s will be called a *basis function set*. We now wish to examine the error in the approximation of x(t) by $x_a(t)$. As in the case of ordinary vectors, the expansion $x_a(t) = \sum_{n=1}^{N} X_n \phi_n(t)$ is easiest to use if the $\phi_n(t)$'s are orthogonal on the interval $(t_0, t_0 + T)$.

That is,

$$\int_{t_0}^{t_0+T} \phi_m(t)\phi_n^*(t) \, dt = c_n \delta_{nm} \triangleq \begin{cases} c_n, & n=m\\ 0, & n\neq m \end{cases} \text{ (all } m \text{ and } n)$$

where, if $c_n = 1$ for all n, the $\phi_n(t)$'s are said to be normalized.

- A normalized orthogonal wet of functions is called on *orthogonal basis set*.
 - δ_{mn} is called the Kronecker delta function, is defined as unity if m = n, and zero otherwise.
- The error in the approximation will be measured in the *integral-square sense* (ISE)

Error = $\epsilon_N = \int_T |x(t) - x_a(t)|^2 dt$ where $\int_T (\cdot) dt$ denotes the integration over t from t_0 to $t_0 + T$.

- The ISE is an applicable measure of error only when x(t) is an energy signal or a power signal. If x(t) is an energy signal of infinite duration, the limit as $T \to \infty$ is taken.
- We now find the set of coefficients X_n that minimizes the ISE. Substituting $x_a(t)$ into ISE, expressing the magnitude square of the integrand as the integrand times its complex conjugate and expanding, we obtain

$$\epsilon_N = \int_T |x(t)|^2 dt - \sum_{n=1}^N \left[X_n^* \int_T x(t) \phi_n^*(t) dt + X_n \int_T x^*(t) \phi_n(t) dt \right] \\ + \sum_{n=1}^N c_n |X_n|^2$$

• To find the X_n 's that minimizes ϵ_N we add and subtract the quantity

$$\sum_{n=1}^{N} \frac{1}{c_n} \left| \int_T x(t) \phi_n^*(t) \, dt \right|^2$$

which yields

$$\epsilon_N = \int_T |x(t)|^2 dt - \sum_{n=1}^N \frac{1}{c_n} \left| \int_T x(t)\phi_n^*(t) dt \right|^2 + \sum_{n=1}^N c_n \left| X_n - \frac{1}{c_n} \int_T x(t)\phi_n^*(t) dt \right|^2$$
independent of X_n 's

• The first two terms on the right-hand side of ϵ_N are independent of the coefficients X_n . Since the last sum on the right-hand side is nonnegative, we will minimize ϵ_N if we choose each X_n such that the corresponding term in the sum is zero. Thus, since $c_n > 0$, the choice of

$$X_n = \frac{1}{c_n} \int_T x(t)\phi_n^*(t) dt$$

for X_n minimizes the ISE.

- The resulting minimum-error coefficients will be referred to as the *Fourier coefficients*.
- Minimum value for ϵ_n

$$\begin{aligned} (\epsilon_n)_{\min} &= \int_T |x(t)|^2 \, dt - \sum_{n=1}^N \frac{1}{c_n} \left| \int_T x(t) \phi_n^*(t) \, dt \right|^2 \\ &= \int_T |x(t)|^2 \, dt - \sum_{n=1}^N c_n |X_n|^2 \end{aligned}$$

If we can find an infinite set of orthonormal functions such that $\lim_{N\to\infty} (\epsilon_N)_{\min} = 0$ for any signal that is integrable square,

$$\int_T |x(t)|^2 \, dt < \infty$$

we say that the $\phi_n(t)$'s are complete. In the sense that the ISE is zero, we may then write

$$x(t) = \sum_{n=1}^{\infty} X_n \phi_n(t) \quad \text{(ISE=0)}$$

Assuming a complete orthogonal set of functions, we obtain the relation

$$\int_{T} |x(t)|^2 dt = \sum_{n=1}^{N} c_n |X_n|^2$$

This equation is known as *Parseval's theorem*.

In general, equation $\lim_{N\to\infty} (\epsilon_N)_{\min} = 0$ requires that x(t) be equal to $x_a(t)$ as $N \to \infty$.

• *Example,* The signal x(t) is to be approximated by a two-term generalized Fourier series

The Fourier coefficients are calculated as

$$X_1 = \int_0^2 \phi_1(t) \sin(\pi t) dt = \int_0^1 \sin(\pi t) dt = \frac{2}{\pi}$$
$$X_2 = \int_0^2 \phi_2(t) \sin(\pi t) dt = \int_1^2 \sin(\pi t) dt = -\frac{2}{\pi}$$

• Thus the generalized two-term Fourier series approximation for this signal is

$$x_a(t) = \frac{2}{\pi}\phi_1(t) - \frac{2}{\pi}\phi_2(t) = \frac{\pi}{2}\left[\operatorname{rect}\left(t - \frac{1}{2}\right) - \operatorname{rect}\left(t - \frac{3}{2}\right)\right]$$

Space interpretation

Complex Exponential Fourier Series

Consider a signal x(t) defined over the interval $(t_0, t_0 + T)$ with the definition

$$\omega_0 = 2\pi f_0 = \frac{2\pi}{T_0}$$

we define the complex exponential Fourier series as

$$x(t) = \sum_{n=-\infty}^{\infty} X_n e^{jn\omega_0 t}, \quad t_0 \le t \le t + 0 + T_0$$

where

$$X_n = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} x(t) e^{-jn\omega_0 t} dt$$

- It can be shown to represent the signal x(t) exactly in the interval $(t_0, t_0 + T_0)$, except at a point of jump discontinuity where it converges to the arithmetic mean of the left-hand and right-hand limits.
- Outside the interval $(t_0, t_0 + T_0)$, nothing is guaranteed.

• However, we note that the right-hand side of the complex exponential Fourier series is period with period T_0 , since it is the sum of periodic rotating phasors with harmonic frequencies.

If x(t) is periodic with period T_0 , the Fourier series is an accurate representation for x(t) for all t (except at points of discontinuity).

- A useful observation about a complete orthonormal-series expansion of a signal is that the series is unique.
 - For example, if we somehow find a Fourier expansion for a signal x(t), we know that no other Fourier expansion for that x(t) exists, since $\{e^{jn\omega_0 t}\}$ forms a complete set.

Example

- Consider the signal $x(t) = \cos(\omega_0 t) + \sin^2(2\omega_0 t)$ where $\omega_0 = 2\pi/T_0$. Find the complex exponential Fourier series.
- Solution: Using trigonometric identities and Euler's theorem, we obtain

$$\begin{aligned} x(t) &= \cos(\omega_0 t) + \frac{1}{2} - \frac{1}{2}\cos(4\omega_0 t) \\ &= \frac{1}{2}e^{j\omega_0 t} + \frac{1}{2}e^{-j\omega_0 t} + \frac{1}{2} - \frac{1}{4}e^{j\omega_0 t} - \frac{1}{4}e^{-j\omega_0 t} \end{aligned}$$

- Hence,

$$X_{0} = \frac{1}{2}$$

$$X_{1} = \frac{1}{2} = X_{-1}$$

$$X_{4} = \frac{1}{4} = X_{-4}$$