Mobile Communications
 (KECE425)

Lecture Note 22
5-26-2014
Prof.Young-Chai Ko

Summary

- Complexity issues of diversity systems
- ADC and Nyquist sampling theorem
- Transmit diversity
- Channel is known at the transmitter (Closed-loop transmit diversity: CLTD)
- Channel is unknown at the transmitter (Space-time block coding: STBC)
- Transmit-Receive diversity (Maximal ratio transmission)
- Multi-user opportunistic diversity
- MIMO channel capacity

Maximal Ratio Transmission (MRT)

- MRT is also called multiple input multiple output (MIMO)-MRC.

- MIMO channel can be represented in matrix form:

$$
\mathbf{H}=\left[\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 T} \\
h_{21} & h_{22} & \cdots & h_{2 T} \\
\vdots & \vdots & \vdots & \vdots \\
h_{R 1} & h_{R 2} & \cdots & h_{R T}
\end{array}\right]
$$

- Vector representation

$$
\begin{aligned}
\mathbf{w}_{t} & =\left[\begin{array}{llll}
w_{t 1} & w_{t 2} & \cdots & w_{t T}
\end{array}\right]^{T} \\
\mathbf{w}_{r} & =\left[\begin{array}{llll}
w_{r 1} & w_{r 2} & \cdots & w_{r R}
\end{array}\right]^{T} \\
\mathbf{n} & =\left[\begin{array}{llll}
n_{1} & n 2 & \cdots & n_{R}
\end{array}\right]^{T}
\end{aligned}
$$

- Received signal:

$$
\begin{aligned}
r_{1} & =\left(w_{t, 1} h_{11}+w_{t, 2} h_{12}+\cdots+w_{t, T} h_{1 T}\right) s+n_{1} \\
r_{2} & =\left(w_{t, 1} h_{21}+w_{t, 2} h_{22}+\cdots+w_{t, T} h_{2 T}\right) s+n_{2} \\
& \vdots \\
r_{R} & =\left(w_{t, 1} h_{R 1}+w_{t, 2} h_{R 2}+\cdots+w_{t, T} h_{R T}\right) s+n_{R}
\end{aligned}
$$

- Received signal in vector form:

$$
\mathbf{r}=\mathbf{H} \mathbf{w}_{t} s+\mathbf{n}
$$

- Combined signal:

$$
r_{t}=\mathbf{w}_{r} \mathbf{r}
$$

- Optimal receive weight vector \mathbf{w}_{r} can be easily shown to be given as

$$
\mathbf{w}_{r}=c\left(\mathbf{H} \mathbf{w}_{t}\right)^{H}=c \mathbf{w}_{t}^{H} \mathbf{H}^{H}
$$

where $(\cdot)^{H}$ denote the Hermitian operation.

- In this case, the received signal can be written as

$$
\begin{aligned}
r_{t} & =\mathbf{w}_{r} \mathbf{r} \\
& =\mathbf{w}_{r}\left(\mathbf{H} \mathbf{w}_{t} s+\mathbf{n}\right) \\
& =c \mathbf{w}_{t}^{H} \mathbf{H}^{H} \mathbf{H} \mathbf{w}_{t} s+c \mathbf{w}_{t}^{H} \mathbf{H}^{H} \mathbf{n}
\end{aligned}
$$

- SNR of the received signal
- Received signal can be written as

$$
r_{t}=c \mathbf{w}_{t}^{H} \mathbf{H}^{H} \mathbf{H} \mathbf{w}_{t} s+c \mathbf{w}_{t}^{H} \mathbf{H}^{H} \mathbf{n}
$$

- SNR of r_{t}

$$
\gamma_{t}=\frac{1}{\sigma_{n}^{2}} \mathbf{w}_{t}^{H} \mathbf{H}^{H} \mathbf{H} \mathbf{w}_{t}
$$

- Optimal transmit weight vector, $\mathbf{w}_{t}^{\text {opt }}$

$$
\begin{aligned}
\mathbf{w}_{t}^{\mathrm{opt}} & =\max _{\mathbf{w}_{t}} \gamma_{t} \\
& =\max _{\mathbf{w}_{t}} \frac{1}{\sigma_{n}^{2}} \mathbf{w}_{t}^{H} \mathbf{H}^{H} \mathbf{H} \mathbf{w}_{t} \\
& =\max _{\mathbf{w}_{t}} \mathbf{w}_{t}^{H} \mathbf{H}^{H} \mathbf{H} \mathbf{w}_{t}
\end{aligned}
$$

- Find the optimal weight vector \mathbf{w}_{t} to maximize the $\operatorname{SNR} \gamma_{t}$.

$$
\mathbf{w}_{t}^{\mathrm{opt}}=\max _{\mathbf{w}_{t}} \mathbf{w}_{t}^{H} \mathbf{H}^{H} \mathbf{H} \mathbf{w}_{t}
$$

- We can solve this problem by making use of Rayleigh-Ritz theorem.
- Rayleigh-Ritz theorem

$$
\mathbf{x}^{H} \mathbf{A} \mathbf{x} \leq\|\mathbf{x}\| \lambda_{\max }
$$

where \mathbf{A} is the Hermitian matrix, \mathbf{x} is an y non-zero complex vector and $\lambda_{\text {max }}$ is the largest eigenvalue of \mathbf{A}.

- Equality holds if and only if \mathbf{x} is the eigenvector corresponding to $\lambda_{\max }$.
- Based on Rayleigh-Ritz theorem, we can find the optimal weight vector $\mathbf{w}_{t}^{\text {opt }}$, we can find the optimal weight vector as

$$
\mathbf{w}_{t}^{\mathrm{opt}}=\sqrt{\Omega} \mathbf{U}_{\max }
$$

where $\mathbf{U}_{\text {max }}$ is the eigenvector corresponding to the largest eigenvalue of the quadratic form $\mathbf{F}=\mathbf{H}^{H} \mathbf{H}$ and $\mathbf{U}_{\max }^{H} \mathbf{U}_{\text {max }}=\mathbf{I}$

- Combined SNR with the optimum weight vector

$$
\gamma_{t}=\frac{\Omega \lambda_{\max }}{\sigma_{n}^{2}}
$$

Multi-User Opportunistic Diversity

- We often need to select users if there are more than users to support the service, for a certain limited frequency (or/and time) resource.
- Example:
- There are 50 MHz bandwidth for the service and each user takes 5 MHz bandwidth. In this case, we can support 10 users for a given time.
- However, more than 50 users, saying 100 users, are willing to communicate at the same time, what is the best way to select users among 100 users?
- Multi-user opportunistic diversity scheme is simply to select the users with the strongest SNRs.
- Schematic concept of multi-user diversity (MUD).

- Choose the user which has the largest SNR among K users.
- If one user is selected out of K users at every selection period, the selected user k^{*} can be written as

$$
k^{*}=\max _{k}\left(\gamma_{1}, \gamma_{2}, \cdots, \gamma_{K}\right)
$$

- By doing this, we can improve the channel capacity such as

$$
\begin{aligned}
C & =E\left[\log _{2}\left(1+\gamma_{k}^{*}\right)\right] \\
& =\int_{0}^{\infty} \log _{2}\left(1+\gamma_{k}^{*}\right) p_{\gamma_{k^{*}}}\left(\gamma_{k^{*}}\right) d \gamma_{k^{*}}
\end{aligned}
$$

- Multi-user diversity gain

Channel Capacity in Diversity MIMO

$$
C=\log _{2}\left(1+\gamma_{t}\right) \quad[\mathrm{bps} / \mathrm{Hz}]
$$

Channel capacity is logarithmically increasing versus SNR which is very slow rate of increasing.

Degree of freedom is 1 .

$$
C=\log _{2}\left(1+\gamma_{t}\right) \quad[\mathrm{bps} / \mathrm{Hz}]
$$

