Mobile Communications (KECE425)

Lecture Note 24 6-2-2014 Prof. Young-Chai Ko

Summary

- Singular value decomposition (SVD)
- MIMO channel in SVD

Hermitian Matrix

 \bullet The matrix A is called Hermitian matrix if

$$A = A^H$$

• If matrix is Hermitian, its eigenvalues are real.

• Example of Hermitian matrix: $F = H^H H$ or $F = H H^H$ in MIMO channels.

Positive and Semi-Positive Matrix

- Definition
 - Define the inner product between two complex vectors

$$<\mathbf{x},\mathbf{y}>=\sum_{j=1}^{n}x_{j}y_{j}^{*}$$

- The matrix A is positive definite matrix if $\langle A\mathbf{x}, \mathbf{x} \rangle > 0$ for $\mathbf{x} \neq \mathbf{0}$
- The matrix A is positive semi-definite if $\langle A\mathbf{x}, \mathbf{x} \rangle \geq \mathbf{0}$ for all \mathbf{x} .
- Properties of positive definite (or semi-positive definite) matrix
 - Its eigenvalues are positive (or non-negative) real values.
- Example of semi-positive definite matrix: $F = H^H H$ or $F = H H^H$ in MIMO channel

Singular Value Decomposition

- Handy mathematical technique that has application to many problems.
- Given any $m \times n$ matrix A, algorithm to find matrices U, V, and D such that

```
A = UDV^H
```

U: is $m \times m$ and orthonormal, that is, $UU^H = I$,

D: is $m \times n$ and diagonal

V: is $n \times n$ and orthonormal, that is, $VV^H = I$.

• SVD

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}_{m \times n}$$

1) m > n

$$= \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1m} \\ u_{21} & u_{22} & \cdots & u_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ u_{m1} & u_{m2} & \cdots & u_{mm} \end{bmatrix} \begin{bmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_n} \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} v_{11} & v_{12} & \cdots & v_{1n} \\ v_{21} & v_{22} & \cdots & v_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ v_{n1} & v_{n2} & \cdots & v_{nn} \end{bmatrix}^H$$

 $(2) \ n > m$

$$= \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1m} \\ u_{21} & u_{22} & \cdots & u_{2m} \\ \vdots & \vdots & \cdots & \vdots \\ u_{m1} & u_{m2} & \cdots & u_{mm} \end{bmatrix} \begin{bmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_2} & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_m} & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} v_{11} & v_{12} & \cdots & v_{1n} \\ v_{21} & v_{22} & \cdots & v_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ \vdots & \vdots & \cdots & \vdots \\ v_{n1} & v_{n2} & \cdots & v_{nn} \end{bmatrix}^H$$

3)
$$n = m$$
,

$$= \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1m} \\ u_{21} & u_{22} & \cdots & u_{2m} \\ \vdots & \vdots & \cdots & \vdots \\ u_{m1} & u_{m2} & \cdots & u_{mm} \end{bmatrix} \begin{bmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_m} \end{bmatrix} \begin{bmatrix} v_{11} & v_{12} & \cdots & v_{1n} \\ v_{21} & v_{22} & \cdots & v_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ v_{n1} & v_{n2} & \cdots & v_{nn} \end{bmatrix}^H$$

- Rank of the matrix A is defined as the number of non-zero values in D.
 - We can show the rank of A is at most $\min(m, n)$, that is, the maximum value of rank A is $\min(m, n)$.

• Consider $D^H D$.

1)
$$m = n$$

$$D^{H}D = \begin{bmatrix} \sqrt{\lambda_{1}} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_{2}} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_{n}} \end{bmatrix} \begin{bmatrix} \sqrt{\lambda_{1}} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_{2}} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_{n}} \end{bmatrix} = \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}$$

(2)
$$m > n$$

$$D^{H}D = \begin{bmatrix} \sqrt{\lambda_{1}} & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_{2}} & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_{n}} & 0 & \cdots & 0 \end{bmatrix}_{n \times m} \begin{bmatrix} \sqrt{\lambda_{1}} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_{2}} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_{n}} \\ 0 & 0 & \cdots & 0 \end{bmatrix}_{m \times n}$$

$$= \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}_{n \times n}$$

3) n > m

$$D^{H}D = \begin{bmatrix} \sqrt{\lambda_{1}} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_{2}} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_{m}} \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \end{bmatrix}_{m \times n} \begin{bmatrix} \sqrt{\lambda_{1}} & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_{2}} & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_{m}} & 0 & \cdots & 0 \end{bmatrix}_{n \times m}$$

at most m non-zero eigenvalues (m < n).

• Consider $A^H A$:

$$A^{H}A = (UDV^{H})^{H}(UDV^{H}) = VD^{H}U^{H}UDV^{H} = V(D^{H}D)V^{H}$$

- Let $F = A^H A$ and $\Sigma = D^H D$. Note that Σ is $n \times n$ diagonal matrix.
- Then $F = V \Sigma V^H$.
- Now consider FV:

$$FV = V\Sigma V^{H}V = V\Sigma$$

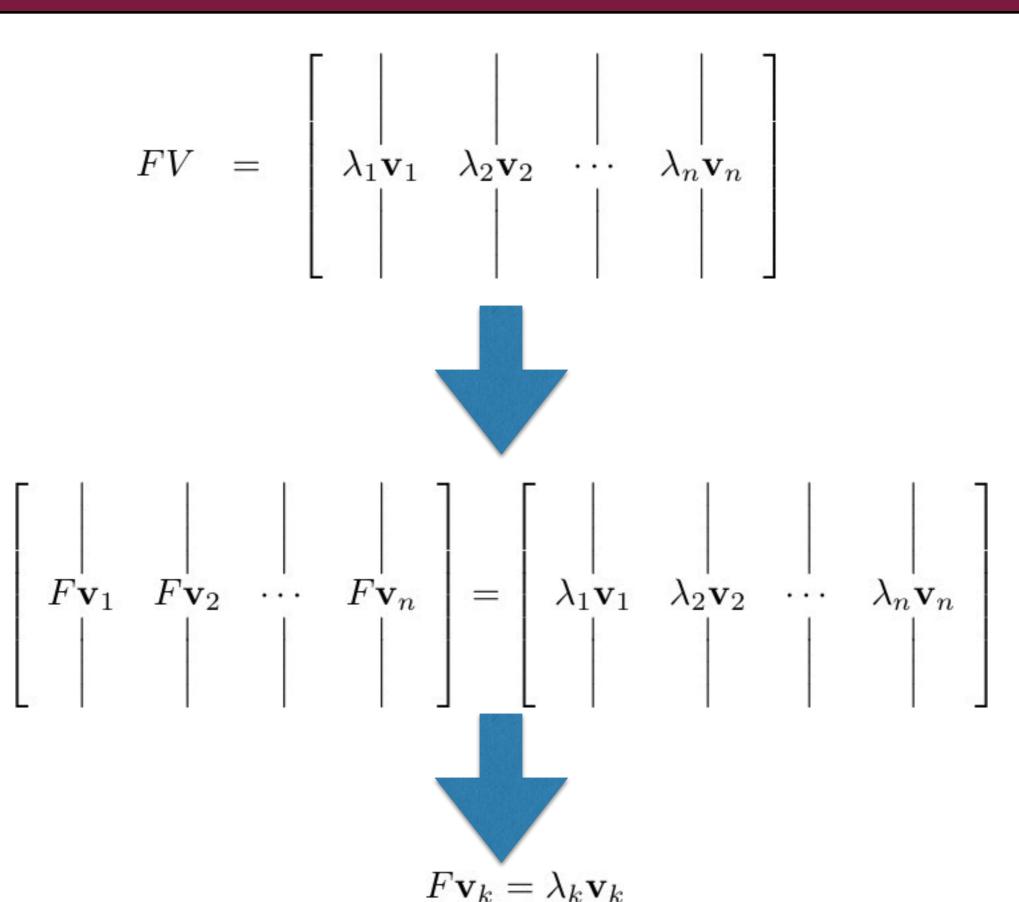
$$= \begin{bmatrix} v_{11} & v_{12} & \cdots & v_{1n} \\ v_{21} & v_{22} & \cdots & v_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ v_{n1} & v_{n2} & \cdots & v_{nn} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

$$FV = V\Sigma V^H V = V\Sigma$$

$$= \begin{bmatrix} v_{11} & v_{12} & \cdots & v_{1n} \\ v_{21} & v_{22} & \cdots & v_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ v_{n1} & v_{n2} & \cdots & v_{nn} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 v_{11} & \lambda_2 v_{12} & \cdots & \lambda_n v_{1n} \\ \lambda_1 v_{21} & \lambda_2 v_{22} & \cdots & \lambda_n v_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ \lambda_1 v_{n1} & \lambda_2 v_{n2} & \cdots & \lambda_n v_{nn} \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 \mathbf{v}_1 & \lambda_2 \mathbf{v}_2 & \cdots & \lambda_n \mathbf{v}_n \\ | & | & | & | \end{bmatrix}$$

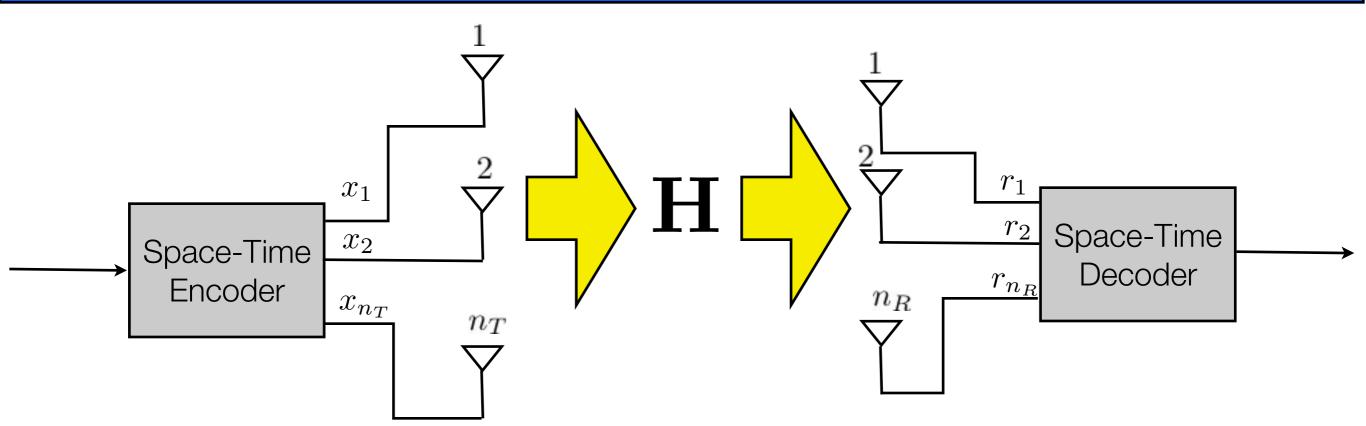


• SVD for a matrix A is

$$A = UDV^H$$

- Each column vector of V is the eigenvector of A^HA .
- D is diagonal matrix with the square root of eigenvalues of A^HA in its diagonal elements.
- We can also show that each column vector of U is the eigenvector of AA^H .

MIMO for Spatial Multiplexing



 MIMO spatial multiplexing means the transmission of multiple data streams from the transmit antennas instead of signal data stream such as in diversity systems. • Received signal over MIMO channels

$$r_{1} = h_{11}x_{1} + h_{12}x_{2} + \dots + h_{1n_{T}}x_{n_{T}} + n_{1}$$

$$r_{2} = h_{21}x_{1} + h_{22}x_{2} + \dots + h_{2n_{T}}x_{n_{T}} + n_{2}$$

$$\vdots$$

$$r_{n_{R}} = h_{n_{R}1}x_{1} + h_{n_{R}2}x_{2} + \dots + h_{n_{R}n_{T}}x_{n_{T}} + n_{n_{R}}$$

or in vector form with the channel matrix H

$$\mathbf{r} = H\mathbf{x} + \mathbf{n}$$

where

$$\mathbf{r} = [r_1 \, r_2 \dots r_{n_R}]^T,
\mathbf{x} = [x_1 \, x_2 \dots x_{n_T}]^T,
\mathbf{n} = [n_1 \, n_2 \dots n_{n_R}]^T$$

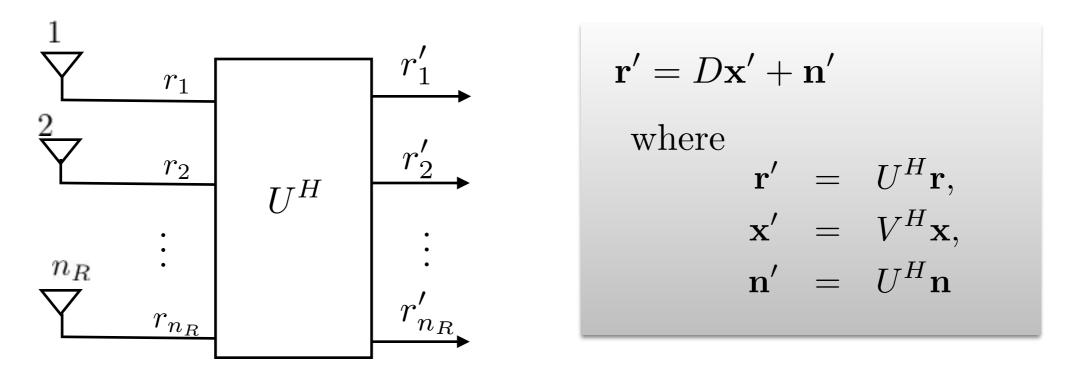
• MIMO channel matrix, H can be also factored by SVD such as:

$$H = UDV^H$$

• Then we can rewrite the received signal in vector form as

$$\mathbf{r} = UDV^H \mathbf{x} + \mathbf{n}$$

• At the receiver consider the following linear signal processing:



where we assume that the receiver knows the channels, that is, H, by estimation, perfectly.

$$\mathbf{r}' = D\mathbf{x}' + \mathbf{n}'$$

1) When
$$n_R > n_T$$
, recall D has the form of
$$D = \begin{bmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_{n_T}} \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

Then we have

$$r'_{1} = \sqrt{\lambda_{1}}x'_{1} + n'_{1}$$

$$r'_{2} = \sqrt{\lambda_{2}}x'_{2} + n'_{2}$$

$$\vdots$$

$$r_{n_{T}} = \sqrt{\lambda_{n_{T}}}x'_{n_{T}} + n'_{n_{T}}$$

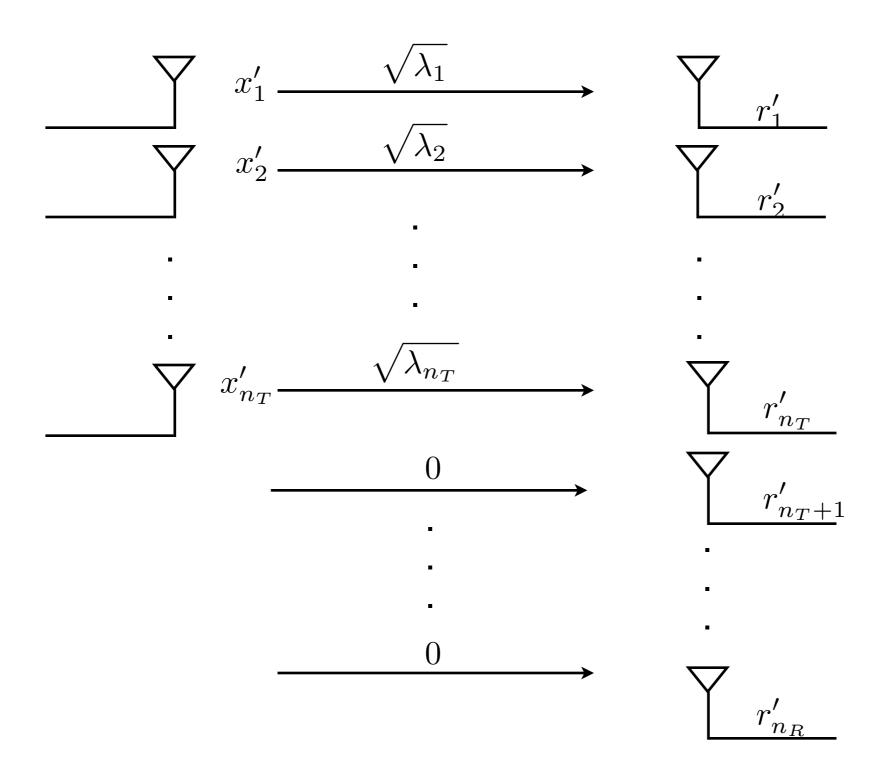
$$r_{n_{T}+1} = n_{n_{T}+1}$$

$$\vdots$$

$$\vdots$$

$$r_{n_{R}} = n_{n_{R}}$$

- In this case, the MIMO channel can be modeled as n_T parallel channels with the channel coefficient $\sqrt{\lambda_k}$ for $k=1,2,...,n_T$.



$$\mathbf{r}' = D\mathbf{x}' + \mathbf{n}'$$

2) When $n_T > n_R$, recall D has the form of

$$D = \begin{bmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_2} & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_{n_R}} & 0 & \cdots & 0 \end{bmatrix} \begin{array}{c} \\ n_R \times n_T \end{array}$$

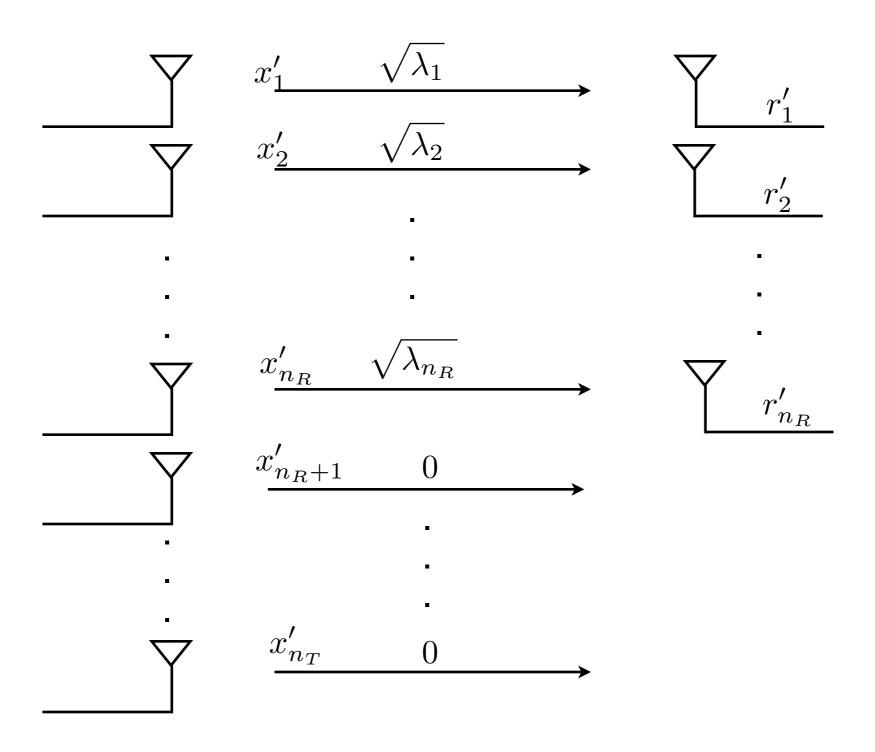
* Then we have

$$r'_{1} = \sqrt{\lambda_{1}}x'_{1} + n'_{1}$$

$$\vdots$$

$$r'_{n_{R}} = \sqrt{\lambda_{n_{R}}}x'_{n_{R}} + n'_{n_{R}}$$

- In this case, the MIMO channel can be modeled as n_R parallel channels with the channel coefficient $\sqrt{\lambda_k}$ for $k=1,2,...,n_R$.



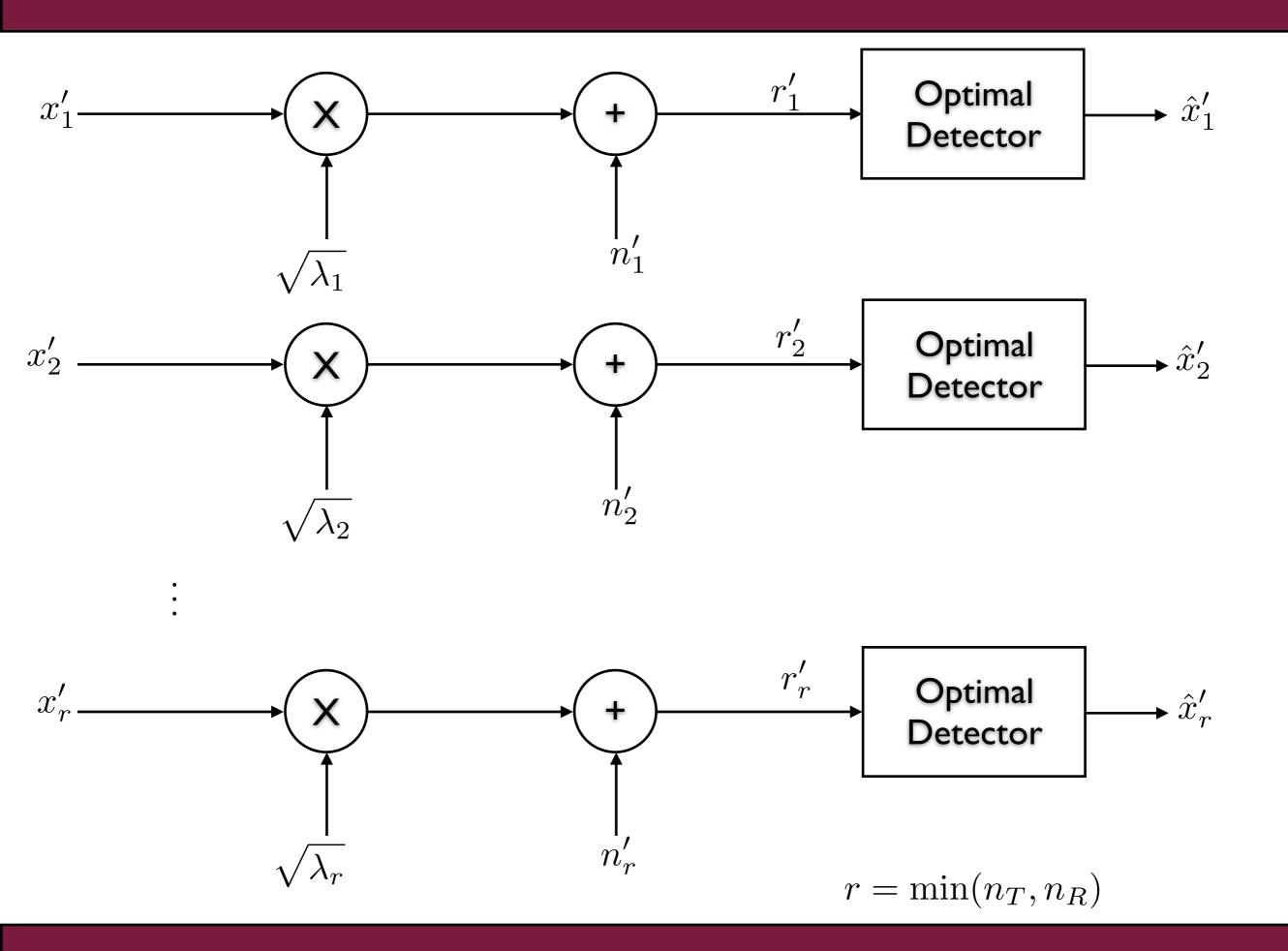
- Rank of a matrix is equal to the number of non-zero eigenvalues.
 - For a matrix of A with the size of $m \times n$, the rank r is given as

$$r = \min(m, n)$$

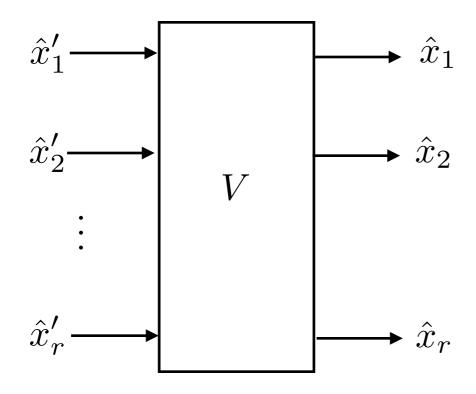
• Hence, the MIMO channel with n_T and n_R antennas at the transmitter and the receiver, respectively, the rank r is given as

$$r = \min(n_T, n_R)$$

- So we have r parallel channels.



• Recall $\mathbf{x}' = V^H \mathbf{x}$.



- Also recall $VV^H = I$.

$$\hat{\mathbf{x}} = V\hat{x}' = VV^H\mathbf{x} + V\mathbf{n}' = \mathbf{x} + \mathbf{n}'$$