

Lynn Choi Korea University

Computer System Laboratory

Goals of WSN MAC Protocols

MAC: Efficient sharing of communication resources

- When the communication channel is shared
 - Wireless networks are broadcast-based and shared (multi-access) channels
- Common goals: throughput, latency, fairness
 - Reduce collisions, consider fairness

Goals of WSN MAC Protocols

- Energy conservation is the primary goal since
 - Energy source is battery-limited
 - Communication traffic is intermittent (i.e. nodes sleep most of time)
 - To maximize the network lifetime
- Communication latency and throughput are the secondary goals?
- Others: scalability, adaptability, fairness, ...
 - Since all nodes cooperate for a single common task, fairness is a secondary concern as long as application-level performance is not degraded

Sources of Energy Wastes

Idle listening

- A node listens but no message appears
- ► Occupies 50 ~ 100% of the energy required for packet reception
- Over hearing
 - A node listens to a message that is destined to another node
- Collision: both at the sender and at the receiver
 - At the receiver side, a node listens but cannot hear any due to collision
 - At the sender side, two nodes transmit at the same time but they must retransmit the messages later

Over emitting

- A node sends a message but the receiver is not ready
- Control packet overhead

Issues in WSN MAC Protocols

No single coordination authority as in infrastructure-based networks

- Fully-distributed autonomous protocol
 - MAC protocols and their setup must be autonomous and fully distributed without central coordination
- Distributed synchronization among the sensor nodes
 - Sensor nodes need to synchronize with each other in a completely distributed manner for
 - Sender/receiver synchronization for transmission
 - Temporal ordering of detected events
 - Elimination of redundant events/messages

Energy conscious design

- Must minimize wasteful energy consumption
 - Wireless communication is the most energy-draining source
 - Communicating a single bit consumes as much power as processing 1000 instructions locally

Dynamic topology

- Must be adaptable to frequent topology changes
 - Due to power-down/up, and also due to failure and mobility

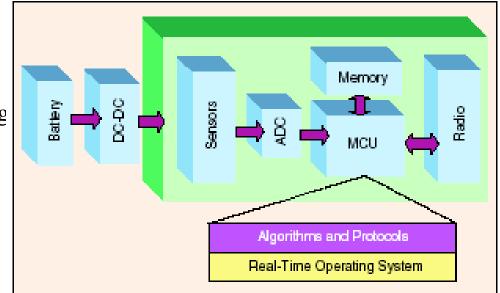
Sensor Network Traffic Patterns

Traffic patterns in sensor networks

- Little activity in lengthy period
- Intensive (burst) traffic in short time
- Highly correlated traffic
- Small packet size
- Multi-hop dynamic topologies
- The network operates as a collective structure rather than many point-topoint flows
- Converge-cast traffic
 - Many sensor nodes (sources) deliver packets to a few sink nodes

Energy Distribution

Radio


- RF transceiver
- Power amplifier
- Digital baseband processing

Processing

- Protocol stack
- Applications
- Operating system

Sensors & ADC

- Low-power modalities (temperature, light)
- Medium-power modalities (acoustic, magnetic)
- High-power modalities (image, video)
- Actuators, clock distribution

Computation versus Communication

Processing overhead

- 0.5 nJ/Instruction for Cygnal C8051F300 @ 25MHz
- 1.1 nJ/Instruction for Xscale PXA250 @ 400 MHz
- ◆ 2.1 nJ/Instruction for ARM Thumb @ 40 MHz
- ◆ 4 nJ/Instruction for ATMega128L @ 4MHz

Communication overhead

- Energy per bit in radios is a strong function of desired communication performance and choice of modulation
 - Currently around 150 nJ/bit for short ranges

MICA mote Berkeley	Transmit	720 nJ/bit	Processor	4 nJ/op	
Dernetey	Receive	110 nJ/bit	~ 100 ops/bit		
WINS node	Transmit	6600 nJ/bit	Processor	1.6 nJ/op	
RSC	Receive	3300 nJ/bit	~ 3000 ops/bit		rea: Backwell Automation

Source: Rockwell Automation

http://it.korea.ac.kr

Power Dissipation Example: WINS

WINS NG 2.0

- Development platform used in DARPA SensIT
- ► SH-4 processor @ 167 MHz
- ► DSP with 4-channel 16-bit ADC
- ► GPS
- dual 2.4 GHz radios
- Linux 2.4 + Sensoria APIs

Power Dissipation

- Processor
 - Active = 360 mW (repeated tx/rx)
 - Sleep = 41 mW
 - Off = 0.9 mW
- Sensor = 23 mW
- Tx = 700 mW max
- Rx = 368mW

Table 1. Power Analysis of Rockwell's Wins Nodes.					
MCU Mode	Sensor Mode	Radio Mode	Power (mW)		
Active	On	Tx (Power: 36.3 mW)	1080.5		
		Tx (Power: 19.1 mW)	986.0		
		Tx (Power: 13.8 mW)	942.6		
		Tx (Power: 3.47 mW)	815.5		
		Tx (Power: 2.51 mW)	807.5		
		Tx (Power: 0.96 mW)	787.5		
		Tx (Power: 0.30 mW)	773.9		
		Tx (Power: 0.12 mW)	771.1		
Active	On	Rx	751.6		
Active	On	Idle	727.5		
Active	On	Skep	416.3		
Active	On	Removed	383.3		
Sleep	On	Removed	64.0		
Active	Removed	Removed	360.0		

Power Dissipation Example: Medusa II

UCLA Medusa MK-II

- ATMEL 8b CPU @ 4MHz
- ARM Thumb 40MHz
- 1MB FLASH, 136KB SRAM
- TR1000 radio with 20m transmission range and up to 19.2Kbps

Power Dissipation

- Processor
 - Active $\approx 5 \text{ mW}$
 - Idle = 1.2 mW
 - Sleep = 0.02mW
- Sensor $\approx 4.7 \text{ mW}$
- Tx = 14.9 mW max
- ► Rx = 12.5mW

Table 2. Power Analysis of Medusa II Nodes.								
MCU Mode	Sensor Mode	Radio Mode	Mod. Scheme	Data Rate	Power (mW)			
Active	On	Tx(Power: 0.7368 mW)	OOK	2.4 kb/s	24.58			
		Tx(Power: 0.0979 mW)	OOK	2.4 kb/s	19.24			
		Tx(Power: 0.7368 mW)	OOK	19.2 kb/s	25.37			
		Tx(Power: 0.0979 mW)	OOK	19.2 kb/s	20.05			
		Tx(Power: 0.7368 mW)	ASK	2.4 kb/s	26.55			
		Tx(Power: 0.0979 mW)	ASK	2.4 kb/s	21.26			
		Tx(Power: 0.7368 mW)	ASK	19.2 kb/s	27.46			
		Tx(Power: 0.0979 mW)	ASK	19.2 kb/s	22.06			
Active	On	Rx	Any	Апу	22.20			
Active	On	Idle	Any	Апу	22.06			
Active	On	Off	Any	Апу	9.72			
Idle	On	Off	Any	Апу	5.92			
Sleep	Off	Off	Апу	Апу	0.02			

- Sensor node power consumption is strongly dependent on the operating mode
 - In Medusa II, Tx : Rx : Sleep = 25mW : 22mW : 0.02mW
 - In WINS, Tx : Rx : Sleep = 1080mW : 750mW : 64mW
- Idle radio consumes almost as much power as radio in Rx mode
 - Radio needs to be completely shut off to save power as in sensor networks idle time dominates
- Processing power is fairly significant (~30% of overall power)

Observations

Technology trends

- Radios benefit less from technology improvements than processors
- The relative impact of the communication subsystem on the system energy consumption will grow

Power management priority

- Communication is the most dominant factor
- Processing and sensing energy in general less important for low-cost sensors
- Using low-power components and trading-off unnecessary performance can have substantial impact on battery life and energy savings

Power versus WSN Lifetime

MiCA Mote example

- With 2 1.5V AA batteries
 - MICA mote can last 13.2 days @ 25mW (full Tx/Rx)
 - MICA mote can last 330 days @ 1mW
- For 5 years' of sensor network lifetime, the power consumption must be reduced to 180µW

Power Management in WSN Platform

Processor

- Power saving modes: Active, Idle/Doze, Sleep states
- Dynamic scaling of frequency, supply voltage, and threshold voltage
- Other pure HW techniques
 - Transistor sizing: reduce dynamic power by reducing the width of the transistors
 - Transistor reordering to minimize switching activity
 - Low Power Flip-Flop
 - Clock Gating

Operating System

- ▶ The above HW knobs must be incorporated into sensor node OS
 - PA-eCos by UCLA & UCI has rate-monotonic scheduler with shutdown and DVS
- Predictive approaches
 - Predict computation load and set voltage/frequency accordingly
- Gains of 2x-4x typically in CPU power with typical workloads

Power Management in WSN Protocols

- Physical
 - Vary modulation & error coding to find minimum energy consumption point
- MAC
 - Periodic sleep and wakeup (duty-cycle) to prolong the lifetime of the network
 - S-MAC, Wise-MAC, TDMA-based schemes
 - Vary transmission power to reduce energy consumption
 - Use minimum power (rather than peak power) to reach the destination
 - Use multiple short transmission instead of a single long transmission
- Routing and topology management
 - Uniform energy distribution among the sensor nodes
 - Sensor nodes around a sink become bottlenecks
 - Energy-aware routing schemes for static sinks and mobile sinks

Higher layers

Data aggregation and compression

Low Power MAC Approaches

Static channel allocation protocols

- Static allocation of the channel through a predetermined assignment: such as FDMA/TDMA/CDMA
- Plus
 - Can provide a bounded delay
- Minus
 - Inefficient in case of variable rate traffic
 - None of the traditional static allocation methods work well with data traffic which tends to be burst
- ► Example
 - SMACS (UCLA, IEEE Personal Communications, 2000)
 - DTROC (Distributed TDMA receiver oriented channel assignment) MAC protocol

Dynamic channel allocation protocols

- On-demand allocation of the channel
 - Either by a reservation or by a contention
 - Reservation-based protocols (also called demand-based protocols)
 - Contention-based protocols (also called random-access based protocols)
- Plus
 - Efficient in case of variable rate traffic
 - Effective for sensor networks with mobile nodes

Low Power MAC Approaches

Reservation-based protocols

- Reserve the channel according to the demand
- Minus: additional overhead of reservation process
 - May not be suitable for sensor networks due to their large messaging overhead, link setup delay, and unpredictable sensing events

Contention-based (random-access-based) protocols

- Random-access-based contention for transmission
- Minus: no delay guarantees
- ► Example
 - ALOHA: transmit whenever they have data. On collision, wait a random amount of time and retransmit
 - Pure ALOHA, slotted ALOHA
 - CSMA: transmit when they have data and *channel is not busy*
 - CSMA-CD: abort transmission as soon as they detect a collision
 - A variation of this called CSMA-CA is used in WLAN
- ► S-MAC, T-MAC: derived from WLAN
- ► B-MAC, WiseMAC: CSMA with preamble sampling