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Equivalence Relations 

• A relation R is defined on a set S if for every 
pair of elements (a, b) where a, b  S, a R b 

is either true or false. 

• If a R b is true, then a is related to b. 

• An equivalence relation is a relation R that 

satisfies three properties: 

1. (Reflexive) a R a, for all a  S. 

2. (Symmetric) a R b if and only if b R a. 

3. (Transitive) a R b and b R c implies that a R c 
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Equivalence Relations 

• Example  

–  relationship: reflexive, transitive, but not 
symmetric 

– Electrical connectivity: reflexive, transitive, 
symmetric 

– Membership relationship if two cities are in 
the same country 
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Example 

• Given an equivalence relation ~, it is easy to 
decide if a ~ b when the relation is stored as a 
two-dimensional array of Booleans. 

• What if the relation is implicit? 

     → want to be able to infer this quickly 
 

(Ex)  Suppose an equivalence relation ‘~’ over the 
set {a1, a2, a3, a4, a5} with the following relation 
instances:  a1~ a2,  a3~ a4,  a5~ a1,  a4~ a2 

 

           then a1 ~ a4 ? 



• The equivalence class of an element a∈S is the 
subset of S that contains all the elements that 
are related to a  

 

• The equivalence classes form a partition of S: 
every member of S appears in exactly one 
equivalence class 

 

• a ~ b can be checked by checking whether a 
and b are in the same equivalence class 

Equivalence class 
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Equivalence problem 

• The input is initially a set of N sets, each with 
one element. 

• Each set has a different element, so that Si   
Sj =  ; Disjoint 

 

• Two permissible operations: 

– Find  returns the name of the set containing a 
given element (namely, equivalence class) 

– Union  merges the two equivalence classes 
containing a and b 
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• Do not perform any operations comparing 
the relative values of elements, but merely 
require knowledge of their location 

   -> all the elements have been numbered 
sequentially from 1 to N 

• The name of the set returned by Find is 
actually fairly arbitrary. What matters is that 
Find (a) = Find (b) if and only if a and b are 
in the same set 

Equivalence Problem 
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• These operations are important in many 
graph theory problems 

• Two strategies 

– The Find instruction can be executed in constant 
worst-case time 

– The Union instruction can be executed in 
constant worst-case time 

– Both cannot be done simultaneously in constant 
worst-case time 

Equivalence Problem 
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• It is not required that a Find operation return 
any specific name. 

• Rather, Finds on two elements return the 
same answer if and only if they are in the 
same set 

• One idea is to use tree since each element 
in the tree has the same root 

• Represent a set by a tree, a set of sets by a 
forest. 

Data Structure 
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• The name of a set is given by the node at the 
root. 

• A parent pointer is used 

• Since only the name of the parent is required, 
this tree is stored implicitly in an array. 

• The tree is stored implicitly in an array 

– each entry P[i]  in the array represents the 
parent of element i 

– If i is a root, then P[i] = 0 

Tree representation 
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Implicit Array Representation 

7 8 2 1 4 3 6 5 

Fig. 8.1 Eight elements, initially in different sets 

0 0 0 0 0 0 0 0 

1 2 3 4 5 6 7 8 

- Implicit array representation - 
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Implicit Array Representation 

6 

7 8 2 1 4 3 5 

Union(5, 6) 

0 0 0 0 0 5 0 0 

1 2 3 4 5 6 7 8 
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Implicit Array Representation 

7 2 1 4 3 

6 

5 

8 

Union(7, 8) 

0 0 0 0 0 5 0 7 

1 2 3 4 5 6 7 8 
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Implicit Array Representation 

7 

2 1 4 3 

6 

5 

8 

Union(5, 7) 

0 0 0 0 0 5 5 7 

1 2 3 4 5 6 7 8 
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Disjoint set type declaration 

typedef int DisjSet[ NumSets + 1] 

typedef int SetType; 

typedef int ElementType; 

 

void Initialize( DisjSet S ); 

void SetUnion( DisjSet S, SetType R1, SetType R2); 

SetType Find( ElementType X, DisjSet S ); 
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Initialization routine 

void  

Initialize ( DisjSet  S ) 

{ 

    int  i ; 

 

 for ( i = NumSets ;  i > 0 ;  i-- )    

         S[ i ] = 0; 

}  
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Union routine (not the best way) 

/* Assumes R1 and R2 are roots */ 
/* union is a C keyword, so this routine is */ 
/* named SetUnion */ 
 
void  
SetUnion (DisjSet S, SetType R1, SetType R2) 
{ 
 S[R2] = R1; 
}  
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Find routine 

SetType  
Find (ElementType X, DisjSet S) 
{ 
  if ( S[X] <= 0 )  
          return X; 
     else                   
          return Find( S[X], S) 
}  
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Tree representation: Example 

• For 10 elements numbered 1 through 10, 

         S1 = {1, 7, 8, 9} 

         S2 = {2, 5, 10} 

         S3 = {3, 4, 6} 

1 

7 8 9 

5 

2 10 

6 

4 3 

S1 
S3 S2 
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Operations: Find 

• Find(4) → S3    

• Find(9) → S1 

 

1 

7 8 9 

5 

2 10 

6 

4 3 

S1 S3 S2 
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Operations: Union 

1 

7 8 9 

5 

2 10 

S1 S2 

S1 U S2 
1 

7 8 9 
5 

2 10 

5 

1 2 10 

7 8 9 
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Set name 

1 

7 8 9 

5 

2 10 

6 

4 3 

S1 

S2 

S3 

Set name 



Union Strategy 

7 

2 1 4 3 

6 

5 

8 

Union(5, 7) 

0 0 0 0 0 5 5 7 

1 2 3 4 5 6 7 8 
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Union by previous rule 

7 

2 1 4 3 

6 

5 

8 

Union(4, 5) 

2 1 4 3 

7 
6 

5 

8 
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Union by Size 

UnionBySize(4, 5) 

7 

2 1 

4 

3 

6 

5 

8 

7 

2 1 3 

6 

5 4 

8 

2014-02-05 Weiss, Data Structures & Alg's 25 



Worst case tree for N = 16 

2014-02-05 Weiss, Data Structures & Alg's 26 

2 

1 

4 

3 

6 

5 

7 

8 

11 

12 

9 

10 

15 

16 

13 

14 

• If Unions are done by size, the depth of any 
node is never more than log N. 



Performance 

• U(2,1),F(1),U(3,2),F(1),U(4,3),F(1), ..., F(1),U(n,n-1) 

1 2 3 4 n n-1 
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n 

n-1 

2 

1 

2 

1 

3 
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Performance 

• All the n-1 unions take O(n): each one takes a 
constant time. 

 

• The total time needed to process n-2 finds is  

        O(∑
i

n-2
 i) = O(n2) 

 

• How to avoid the worst case behavior  

    →  Use weighting rule 
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Weighting Rule  for UNION (i, j):  

 If the number of nodes in (the height of) tree i is less 
than the number in (the height of ) tree j, then make j 
the parent of i, otherwise make i the parent of j. 

1 

2 3 n n-1 

1 2  n 

1 3 n 

2 

1 4 n 

2 3 

2014-02-05 Weiss, Data Structures & Alg's 29 



Weighting rules 

• Using tree height 

– Make the shallow tree a subtree of the deeper 
tree 

• Using tree size 

– Depending on the number of nodes in the tree 

 

• How to store the number of nodes or height in 
a tree? 

   → Use count field in the root of every tree 
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Ordinary Array Representation 

7 

2 1 

4 

3 

6 

5 

8 

0 0 0 5 0 5 5 7 

1 2 3 4 5 6 7 8 
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Using Weight Rules 

7 

2 1 

4 

3 

6 

5 

8 

-1 -1 -1 5 -5 5 5 7 

1 2 3 4 5 6 7 8 

Union-by-size 

0 0 0 5 -2 5 5 7 

1 2 3 4 5 6 7 8 

Union-by-height 
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Union by Height Algorithm 

void SetUnion (DisjSet S, SetType R1, SetType R2) 

{ 

 if (S[R2] < S[R1])           /* R2 is deeper set  */ 

   S[R1] = R2;             /* Make R2 new root */ 

 else  

   { 

   if (S[R1] == S[R2])  /* Same height,  */ 

   S[R1]--;        /* so update       */ 

   S[R2] = R1; 

 } 

} 
 

                
2014-02-05 Weiss, Data Structures & Alg's 33 



• When we put all set sets on a queue and 
repeatedly dequeue the first two sets and 
enqueue their union 

Path Expression 
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Path Compression 

• If there are many more Finds than Unions, the 
running time is worse than that of the quick-
find algorithm. 

• The only way to speed up the algorithm without 
reworking the data structure entirely is to do 
something clever on the Find operation 

• Useful when more Finds are required 

• Performed during the Find operation 

• Every node on the path from X to the root has 
its parent changed to the root for Find(X) 
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Path Compression on Find(15) 
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Revised FIND algorithm 

SetType Find (ElementType X, DisjSet S) 

{ 

 if ( S[X] <= 0 ) 

  return X ; 

  else 

  return S[X] = Find ( S[X], S ) ; 

 

} 

return Find( S[X], S) // Original version 
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Lemma 

   (Lemma 1) Let T be a tree with n nodes created as 
a result of algorithm UNION. No node in T has level 
greater |log2n|  + 1 

– As a result of lemma 1, the maximum time to 
process a find is at most O(log n) if there are n 
elements in a tree. 

– Further improvement is possible using the 
Collapsing Rule. 

– Collapsing Rule: If j is a node on the path from i 
to its root and PARENT(j) ≠ root(i), then set 
PARENT(j) ← root(i) 
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