Data Structures and Algorithms

- Set -

School of Electrical Engineering
Korea University

2014-02-05 Weiss, Data Structures & Alg's

Equivalence Relations

A relation R is defined on a set S'if for every
pair of elements (a, b) wherea,b e S, aRb

is either true or false.
 |[faRDbistrue, then a is related to b.
« An equivalence relation is a relation R that
satisfies three properties:
1. (Reflexive) aRa, foralla e S.
2. (Symmetric) a Rb if and only if b R a.

3. (Transitive) a R b and b Rc implies thataR ¢

Equivalence Relations

« Example
— < relationship: reflexive, transitive, but not
symmetric
— Electrical connectivity: reflexive, transitive,
symmetric

— Membership relationship if two cities are in
the same country

Example

« Given an equivalence relation ~, it is easy to
decide if a ~ b when the relation is stored as a
two—dimensional array of Booleans.

 What if the relation is implicit?
— want to be able to infer this quickly

(Ex) Suppose an equivalence relation ‘~’ over the
set {a,, a,, a,, a,, a:} with the following relation
InStanCGS a1~ 32, a3~ a4, a5~ a1, a4~ 3.2

thena; ~a, ?

Equivalence class

 The equivalence class of an element a€ES is the
subset of S that contains all the elements that
are related to a

 The equivalence classes form a partition of S:
every member of S appears in exactly one
equivalence class

« a~ b can be checked by checking whether a
and b are in the same equivalence class

2014-02-05 Weiss, Data Structures & Alg's

Equivalence problem

 The input is initially a set of N sets, each with
one element.

« Each set has a different element, so that S; n
S; = @ ; Disjoint

 Two permissible operations:

— Find returns the name of the set containing a
given element (namely, equivalence class)

— Union merges the two equivalence classes
containing aand b

2014-02-05 Weiss, Data Structures & Alg's

Equivalence Problem

Do not perform any operations comparing
the relative values of elements, but merely
require knowledge of their location

—> all the elements have been numbered
sequentially from 1 to N

 The name of the set returned by F/ndis
actually fairly arbitrary. What matters is that
Find (a) = Find (b) if and only if aand b are
in the same set

2014-02-05 Weiss, Data Structures & Alg's

Equivalence Problem

 These operations are important in many
graph theory problems

 Two strategies

— The Find instruction can be executed in constant
worst—case time

— The Union instruction can be executed in
constant worst—case time

— Both cannot be done simultaneously in constant
worst—case time

2014-02-05 Weiss, Data Structures & Alg's

Data Structure

* |t is not required that a Find operation return
any specific name.

 Rather, Finds on two elements return the
same answer if and only if they are in the
same set

* One idea is to use tree since each element
in the tree has the same root

 Represent a set by a tree, a set of sets by a
forest.

2014-02-05 Weiss, Data Structures & Alg's

Tree representation

The name of a set is given by the node at the
root.

A parent pointer is used

Since only the name of the parent is required,
this tree is stored implicitly in an array.

The tree is stored implicitly in an array

— each entry Pli] in the array represents the
parent of element i

— If i is a root, then Pli] =0

2014-02-05 Weiss, Data Structures & Alg's 10

Implicit Array Representation

Fig. 8.1 Eight elements, initially in different sets

OofofOfOfO]0]O07]O0
1 2 8 4 5 6 7 8

— Implicit array representation —

2014-02-05 Weiss, Data Structures & Alg's

11

Implicit Array Representation

Union(5, 6)

——————

2014-02-05 Weiss, Data Structures & Alg's

12

Implicit Array Representation

Union(7, 8)

————————————

2014-02-05 Weiss, Data Structures & Alg's

13

Implicit Array Representation

Union(5, 7)

I A

————————————————

2014-02-05 Weiss, Data Structures & Alg's

14

Disjoint set type declaration

typedef int DisjSet[NumSets + 1]
typedef int SetType;
typedef int ElementType;

void Initialize(DisjSet S);
void SetUnion(DisjSet S, SetType R1, SetType R2);
SetType Find(ElementType X, DisjSet S);

2014-02-05 Weiss, Data Structures & Alg's

15

Initialization routine

void
Initialize (DisjSet S)
{

int i,

for (i =NumSets; i>0; i——)
S[i]l=0;

2014-02-05 Weiss, Data Structures & Alg's

16

Union routine (not the best way)

/* Assumes R1 and R2 are roots */
/* union is a C keyword, so this routine is */
/* named SetUnion */

void
SetUnion (DisjSet S, SetType R1, SetType R2)
{
S[R2] = R1;
}

2014-02-05 Weiss, Data Structures & Alg's

17

Find routine

SetType
Find (ElementType X, DisjSet S)
{
if (S[X]<=0)
return X;
else
return Find(S[X], S)

2014-02-05 Weiss, Data Structures & Alg's

18

Tree representation: Example

 For 10 elements numbered 1 through 10,

S] = {1 ’ 7’ 89 9}
SS = {8’ 47 6}

SN SN SN\

Si Sy

Ss

19

Operations: Find

SN N\

7 8 9 2 10
81 SZ

. Find(4) — S,
. Find(9) — S,

20

Operations: Union
ST Sy (5
N N\

S;US,

A, 2N SN

1

/\ /1IN

7 8 9

Union Strategy

Union(5, 7)
]
1

2

I

3

2014-02-05 Weiss, Data Structures & Alg's

23

Union by previous rule

Union(4, 5) 6

2014-02-05 Weiss, Data Structures & Alg's

24

Union by Size

UnionBySize(4, 5)

3 5i\7
] T
4/'&6\

2014-02-05

Weiss, Data Structures & Alg's

25

Worst case tree for N = 16

 |f Unions are done by size, the depth of any
node is never more than log M.

1

1<2\\3\5 9
N, N S

RN NN

8 12 14 15

AN

16

2014-02-05 Weiss, Data Structures & Alg’s 26

Performance

1 2 3 4 n—1 n
u(2,1),F(1),U(3,2),F(1),U(4,3),F(1), ..., F(1),U(n,n—1)
I
3 n—1
I
2 2
I f I
1 1 1

2014-02-05

Weiss, Data Structures & Alg's

27

Performance

« All the n—1 unions take O(n): each one takes a
constant time.

 The total time needed to process n—2 finds is
O(z."" i) = 0(n?)

« How to avoid the worst case behavior
— Use weighting rule

2014-02-05 Weiss, Data Structures & Alg's

28

Weighting Rule for UNION (i, j):

If the number of nodes in (the height of) tree i is less
than the number in (the height of) tree j, then make j
the parent of i, otherwise make i the parent of j.

2014-02-05 Weliss, Data Structures & Alg’s 29

Weighting rules

« Using tree height
— Make the shallow tree a subtree of the deeper
tree

* Using tree size
— Depending on the number of nodes in the tree

 How to store the number of nodes or height in

a tree?
— Use count field in the root of every tree

2014-02-05 Weiss, Data Structures & Alg's

30

Ordinary Array Representation

2014-02-05 Weiss, Data Structures & Alg's

31

Using Weight Rules

4 6
Union—-by-size -1 -1 -1| 5| -5 5

Union—by—height ololo]| 5| -2 5

2014-02-05 Weiss, Data Structures & Alg's

32

Union by Height Algorithm

void SetUnion (DisjSet S, SetType R1, SetType R2)
{

if (S[R2] < S[R1]) /* R2 is deeper set */
S[R1] = R2; /* Make R2 new root */
else
{
if (S[R1] == S[R2]) /* Same height, */
S[R1]—-; /* so update */
S[R2] = R1;

}
}

2014-02-05 Weiss, Data Structures & Alg's

33

Path Expression

« When we put all set sets on a queue and
repeatedly dequeue the first two sets and
enqueue their union

1

1
\
\4 \‘6\7 \‘}11 Bi—

14 15
\8 \12 \

16

2014-02-05 Weiss, Data Structures & Alg's 34

Path Compression

If there are many more Finds than Unions, the

running time is worse than that of the quick—
find algorithm.

The only way to speed up the algorithm without

reworking the data structure entirely is to do
something clever on the Find operation

Useful when more Finds are required
Performed during the Find operation

Every node on the path from X to the root has
its parent changed to the root for Find(X)

2014-02-05 Weiss, Data Structures & Alg's 35

r Path Compression on Find(15)

1i\\\

2 3 5 9\
\4 \‘6\7 v‘\}n 13'{>15
\8 \12 \
! 16
=
N 15\
o 3 5 9 13
N ’{\ 'v\\ '\14 16
4 6 7 10 11
N\ \
8 12

2014-02-05 Weiss, Data Structures & Alg’s 36

Revised FIND algorithm

SetType Find (ElementType X, DisjSet S)
{
if (S[X]<=0)
return X ;
else
return S[X] = Find (S[X], S) ;
return Find(S[X], S) // Original version

2014-02-05 Weiss, Data Structures & Alg's

37

Lemma

(Lemma 1) Let T be a tree with n nodes created as
a result of algorithm UNION. No node in T has level
greater |log,n| + 1

— As a result of lemma 1, the maximum time to
process a find is at most O(log 7n) if there are n
elements in a tree.

— Further improvement is possible using the
Collapsing Rule.

— Collapsing Rule: If jis a node on the path from /
to its root and PARENT()) #+ root(/), then set
PARENT()) < root(/)

2014-02-05 Weiss, Data Structures & Alg's

38

2014-02-05

5 6 7 8

UNION(1,2), UNION(3,4) UNION(5,6) UNION(7,8)
5 7

\6 \8
UNION(1,3), UNION(5,7)

/T\

S / ay

UNION(1,5)

\ \

Weiss, Data Structures & Alg’s

8

39

