

School of Electrical Engineering

Korea University

Data Structures and Algorithms

- Set -

2014-02-05 Weiss, Data Structures & Alg's 1

2

Equivalence Relations

• A relation R is defined on a set S if for every
pair of elements (a, b) where a, b  S, a R b

is either true or false.

• If a R b is true, then a is related to b.

• An equivalence relation is a relation R that

satisfies three properties:

1. (Reflexive) a R a, for all a  S.

2. (Symmetric) a R b if and only if b R a.

3. (Transitive) a R b and b R c implies that a R c

3

Equivalence Relations

• Example

–  relationship: reflexive, transitive, but not
symmetric

– Electrical connectivity: reflexive, transitive,
symmetric

– Membership relationship if two cities are in
the same country

4

Example

• Given an equivalence relation ~, it is easy to
decide if a ~ b when the relation is stored as a
two-dimensional array of Booleans.

• What if the relation is implicit?

 → want to be able to infer this quickly

(Ex) Suppose an equivalence relation ‘~’ over the
set {a1, a2, a3, a4, a5} with the following relation
instances: a1~ a2, a3~ a4, a5~ a1, a4~ a2

 then a1 ~ a4 ?

• The equivalence class of an element a∈S is the
subset of S that contains all the elements that
are related to a

• The equivalence classes form a partition of S:
every member of S appears in exactly one
equivalence class

• a ~ b can be checked by checking whether a
and b are in the same equivalence class

Equivalence class

2014-02-05 Weiss, Data Structures & Alg's 5

Equivalence problem

• The input is initially a set of N sets, each with
one element.

• Each set has a different element, so that Si 
Sj =  ; Disjoint

• Two permissible operations:

– Find returns the name of the set containing a
given element (namely, equivalence class)

– Union merges the two equivalence classes
containing a and b

2014-02-05 Weiss, Data Structures & Alg's 6

• Do not perform any operations comparing
the relative values of elements, but merely
require knowledge of their location

 -> all the elements have been numbered
sequentially from 1 to N

• The name of the set returned by Find is
actually fairly arbitrary. What matters is that
Find (a) = Find (b) if and only if a and b are
in the same set

Equivalence Problem

2014-02-05 Weiss, Data Structures & Alg's 7

• These operations are important in many
graph theory problems

• Two strategies

– The Find instruction can be executed in constant
worst-case time

– The Union instruction can be executed in
constant worst-case time

– Both cannot be done simultaneously in constant
worst-case time

Equivalence Problem

2014-02-05 Weiss, Data Structures & Alg's 8

• It is not required that a Find operation return
any specific name.

• Rather, Finds on two elements return the
same answer if and only if they are in the
same set

• One idea is to use tree since each element
in the tree has the same root

• Represent a set by a tree, a set of sets by a
forest.

Data Structure

2014-02-05 Weiss, Data Structures & Alg's 9

• The name of a set is given by the node at the
root.

• A parent pointer is used

• Since only the name of the parent is required,
this tree is stored implicitly in an array.

• The tree is stored implicitly in an array

– each entry P[i] in the array represents the
parent of element i

– If i is a root, then P[i] = 0

Tree representation

2014-02-05 Weiss, Data Structures & Alg's 10

Implicit Array Representation

7 8 2 1 4 3 6 5

Fig. 8.1 Eight elements, initially in different sets

0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8

- Implicit array representation -

2014-02-05 Weiss, Data Structures & Alg's 11

Implicit Array Representation

6

7 8 2 1 4 3 5

Union(5, 6)

0 0 0 0 0 5 0 0

1 2 3 4 5 6 7 8

2014-02-05 Weiss, Data Structures & Alg's 12

Implicit Array Representation

7 2 1 4 3

6

5

8

Union(7, 8)

0 0 0 0 0 5 0 7

1 2 3 4 5 6 7 8

2014-02-05 Weiss, Data Structures & Alg's 13

Implicit Array Representation

7

2 1 4 3

6

5

8

Union(5, 7)

0 0 0 0 0 5 5 7

1 2 3 4 5 6 7 8

2014-02-05 Weiss, Data Structures & Alg's 14

Disjoint set type declaration

typedef int DisjSet[NumSets + 1]

typedef int SetType;

typedef int ElementType;

void Initialize(DisjSet S);

void SetUnion(DisjSet S, SetType R1, SetType R2);

SetType Find(ElementType X, DisjSet S);

2014-02-05 Weiss, Data Structures & Alg's 15

Initialization routine

void

Initialize (DisjSet S)

{

 int i ;

 for (i = NumSets ; i > 0 ; i--)

 S[i] = 0;

}

2014-02-05 Weiss, Data Structures & Alg's 16

Union routine (not the best way)

/* Assumes R1 and R2 are roots */
/* union is a C keyword, so this routine is */
/* named SetUnion */

void
SetUnion (DisjSet S, SetType R1, SetType R2)
{
 S[R2] = R1;
}

2014-02-05 Weiss, Data Structures & Alg's 17

Find routine

SetType
Find (ElementType X, DisjSet S)
{
 if (S[X] <= 0)
 return X;
 else
 return Find(S[X], S)
}

2014-02-05 Weiss, Data Structures & Alg's 18

19

Tree representation: Example

• For 10 elements numbered 1 through 10,

 S1 = {1, 7, 8, 9}

 S2 = {2, 5, 10}

 S3 = {3, 4, 6}

1

7 8 9

5

2 10

6

4 3

S1
S3 S2

20

Operations: Find

• Find(4) → S3

• Find(9) → S1

1

7 8 9

5

2 10

6

4 3

S1 S3 S2

21

Operations: Union

1

7 8 9

5

2 10

S1 S2

S1 U S2
1

7 8 9
5

2 10

5

1 2 10

7 8 9

22

Set name

1

7 8 9

5

2 10

6

4 3

S1

S2

S3

Set name

Union Strategy

7

2 1 4 3

6

5

8

Union(5, 7)

0 0 0 0 0 5 5 7

1 2 3 4 5 6 7 8

2014-02-05 Weiss, Data Structures & Alg's 23

Union by previous rule

7

2 1 4 3

6

5

8

Union(4, 5)

2 1 4 3

7
6

5

8

2014-02-05 Weiss, Data Structures & Alg's 24

Union by Size

UnionBySize(4, 5)

7

2 1

4

3

6

5

8

7

2 1 3

6

5 4

8

2014-02-05 Weiss, Data Structures & Alg's 25

Worst case tree for N = 16

2014-02-05 Weiss, Data Structures & Alg's 26

2

1

4

3

6

5

7

8

11

12

9

10

15

16

13

14

• If Unions are done by size, the depth of any
node is never more than log N.

Performance

• U(2,1),F(1),U(3,2),F(1),U(4,3),F(1), ..., F(1),U(n,n-1)

1 2 3 4 n n-1

1

n

n-1

2

1

2

1

3

2014-02-05 Weiss, Data Structures & Alg's 27

Performance

• All the n-1 unions take O(n): each one takes a
constant time.

• The total time needed to process n-2 finds is

 O(∑
i

n-2
 i) = O(n2)

• How to avoid the worst case behavior

 → Use weighting rule

2014-02-05 Weiss, Data Structures & Alg's 28

Weighting Rule for UNION (i, j):

 If the number of nodes in (the height of) tree i is less
than the number in (the height of) tree j, then make j
the parent of i, otherwise make i the parent of j.

1

2 3 n n-1

1 2 n

1 3 n

2

1 4 n

2 3

2014-02-05 Weiss, Data Structures & Alg's 29

Weighting rules

• Using tree height

– Make the shallow tree a subtree of the deeper
tree

• Using tree size

– Depending on the number of nodes in the tree

• How to store the number of nodes or height in
a tree?

 → Use count field in the root of every tree

2014-02-05 Weiss, Data Structures & Alg's 30

Ordinary Array Representation

7

2 1

4

3

6

5

8

0 0 0 5 0 5 5 7

1 2 3 4 5 6 7 8

2014-02-05 Weiss, Data Structures & Alg's 31

Using Weight Rules

7

2 1

4

3

6

5

8

-1 -1 -1 5 -5 5 5 7

1 2 3 4 5 6 7 8

Union-by-size

0 0 0 5 -2 5 5 7

1 2 3 4 5 6 7 8

Union-by-height

2014-02-05 Weiss, Data Structures & Alg's 32

Union by Height Algorithm

void SetUnion (DisjSet S, SetType R1, SetType R2)

{

 if (S[R2] < S[R1]) /* R2 is deeper set */

 S[R1] = R2; /* Make R2 new root */

 else

 {

 if (S[R1] == S[R2]) /* Same height, */

 S[R1]--; /* so update */

 S[R2] = R1;

 }

}

2014-02-05 Weiss, Data Structures & Alg's 33

• When we put all set sets on a queue and
repeatedly dequeue the first two sets and
enqueue their union

Path Expression

2014-02-05 Weiss, Data Structures & Alg's 34

9

7

2

1

4

3

6

5

8

13
11 10

12

15 14

16

Path Compression

• If there are many more Finds than Unions, the
running time is worse than that of the quick-
find algorithm.

• The only way to speed up the algorithm without
reworking the data structure entirely is to do
something clever on the Find operation

• Useful when more Finds are required

• Performed during the Find operation

• Every node on the path from X to the root has
its parent changed to the root for Find(X)

2014-02-05 Weiss, Data Structures & Alg's 35

Path Compression on Find(15)

9

7

2

1

4

3

6

5

8

13
11 10

12

15 14

16

2014-02-05 Weiss, Data Structures & Alg's 36

9

7

2

1

4

3

6

5

8

13

11 10

12

15

14
16

Revised FIND algorithm

SetType Find (ElementType X, DisjSet S)

{

 if (S[X] <= 0)

 return X ;

 else

 return S[X] = Find (S[X], S) ;

}

return Find(S[X], S) // Original version

2014-02-05 Weiss, Data Structures & Alg's 37

Lemma

 (Lemma 1) Let T be a tree with n nodes created as
a result of algorithm UNION. No node in T has level
greater |log2n| + 1

– As a result of lemma 1, the maximum time to
process a find is at most O(log n) if there are n
elements in a tree.

– Further improvement is possible using the
Collapsing Rule.

– Collapsing Rule: If j is a node on the path from i
to its root and PARENT(j) ≠ root(i), then set
PARENT(j) ← root(i)

2014-02-05 Weiss, Data Structures & Alg's 38

1 2 3 4 5 6 7 8

1 3 5 7

2 4 6 8

1

2 5

6

3

4
7

8

1

2

5

6 3

4

7

8

UNION(1,2), UNION(3,4) UNION(5,6) UNION(7,8)

UNION(1,3), UNION(5,7)

UNION(1,5)

2014-02-05 Weiss, Data Structures & Alg's 39

