GEST 011, Newton's Clock & Heisenberg's Dice, Fall 2013

The Conservation Laws (Mass, Force, Work, Energy, and Momentum)

Mahn-Soo Choi (Korea University) October 12, 2013 (v5.1)

Mass and Force

"Mass" (in dictionaries)

the quantity of matter that a body contains, as measured by its acceleration under a given "force" or by the force exerted on it by a gravitational field.

http://apple.com/

a quantitative measure of an object's resistance to acceleration.

http://en.wikipedia.org/

"Force" (in dictionaries)

an influence tending to change the motion of a body or produce motion or stress in a stationary body. The magnitude of such an influence is often calculated by multiplying the "mass" of the body by its acceleration.

http://apple.com/

In physics, a force is any influence that causes a free body to undergo an acceleration. Force can ... cause an object with mass to change its velocity, i.e., to accelerate, or which can cause a flexible object to deform.

http://en.wikipedia.org/

Gravitational Force

(Newton's Law)

Sir Isaac Newton (1642–1727)

Image from Wikipedia

$$\boldsymbol{F} = G \, \frac{m_1 m_2}{r^2} \, \boldsymbol{e}_{12}$$

$$G = 6.67 \times 10^{-11} \,\mathrm{N \cdot m^2 / kg^2}$$

A mass generates an gravitational field, and the field acts force on the other mass.

Coulomb Force

(charge at rest or in motion)

Charles-Augustin de Coulomb (1736–1806)

Wikipedia

$$\mathbf{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \mathbf{e}_{12}$$
$$\frac{1}{4\pi\epsilon_0} = 8.99 \times 10^9 \,\mathrm{N \cdot m^2/C^2}$$

A charge generates an electric field, and the electric field acts force on the other charge.

Lorentz Force

(charge in motion)

$$\boldsymbol{F} = \boldsymbol{q}\,\boldsymbol{v}\times\boldsymbol{B}$$

A moving charge generates a magnetic field, and the field acts force on other moving charges.

Images courtesy of http://bugman123.com and http://HowStuffWorks.com/, respectively.

Photo by Guy H. 200 El Matador at

What About Frictional Force?

Photo by Guy H. 200 El Matador at

Work and Energy

Work? What is It?

What Is Kinetic Energy?

Consider a particle moving at velocity v at time t.

- Consider a particle moving at velocity v at time t.
- As $t \rightarrow t + dt$, the position will change $x \rightarrow x + dx$. Then:

$$dx = ?$$

- Consider a particle moving at velocity v at time t.
- As $t \rightarrow t + dt$, the position will change $x \rightarrow x + dx$. Then:

$$dx = v dt$$

- Consider a particle moving at velocity v at time t.
- As $t \rightarrow t + dt$, the position will change $x \rightarrow x + dx$. Then:

$$dx = v dt$$

$$As t \rightarrow t + dt,$$

$$x \rightarrow x + dx$$

$$5x \rightarrow 5x + ?$$

$$x^{2} \rightarrow x^{2} + ?$$

- Consider a particle moving at velocity v at time t.
- As $t \rightarrow t + dt$, the position will change $x \rightarrow x + dx$. Then:

$$dx = v dt$$
• As $t \to t + dt$,
 $x \to x + dx$
 $5x \to 5x + 5dx$
 $x^2 \to x^2 + 2x dx$

- Consider a particle moving at velocity v at time t.
- As $t \rightarrow t + dt$, the position will change $x \rightarrow x + dx$. Then:

$$dx = v dt$$

• As $t \rightarrow t + dt$,

$$x \to x + dx$$

$$5x \to 5x + 5dx$$

$$x^{2} \to x^{2} + 2x dx$$

 Consider a particle accelerating with a.

- Consider a particle moving at velocity v at time t.
- As $t \rightarrow t + dt$, the position will change $x \rightarrow x + dx$. Then:

$$dx = v dt$$

• As
$$t \rightarrow t + dt$$
,

$$x \to x + dx$$

$$5x \to 5x + 5dx$$

$$x^{2} \to x^{2} + 2x dx$$

- Consider a particle accelerating with a.
- As $t \rightarrow t + dt$, the velocity will change $v \rightarrow v + dv$. Then:

$$dv = ?$$

- Consider a particle moving at velocity v at time t.
- As $t \rightarrow t + dt$, the position will change $x \rightarrow x + dx$. Then:

$$dx = v dt$$

• As
$$t \rightarrow t + dt$$
,

$$x \to x + dx$$

$$5x \to 5x + 5dx$$

$$x^{2} \to x^{2} + 2x dx$$

- Consider a particle accelerating with a.
- As $t \rightarrow t + dt$, the velocity will change $v \rightarrow v + dv$. Then:

$$dv = a dt$$

- Consider a particle moving at velocity v at time t.
- As $t \rightarrow t + dt$, the position will change $x \rightarrow x + dx$. Then:

$$dx = v dt$$

• As
$$t \rightarrow t + dt$$
,

$$x \to x + dx$$

$$5x \to 5x + 5dx$$

$$x^{2} \to x^{2} + 2x dx$$

- Consider a particle accelerating with a.
- As $t \rightarrow t + dt$, the velocity will change $v \rightarrow v + dv$. Then:

$$dv = a dt$$

• As
$$t \to t + dt$$
,

$$v \rightarrow v + dv$$
$$v^{2} \rightarrow v^{2} + ?$$
$$v^{3} \rightarrow v^{3} + ?$$

- Consider a particle moving at velocity v at time t.
- As $t \rightarrow t + dt$, the position will change $x \rightarrow x + dx$. Then:

$$dx = v dt$$

As
$$t \rightarrow t + dt$$
,

$$x \to x + dx$$

$$5x \to 5x + 5dx$$

$$x^{2} \to x^{2} + 2x dx$$

- Consider a particle accelerating with a.
- As $t \rightarrow t + dt$, the velocity will change $v \rightarrow v + dv$. Then:

$$dv = a dt$$

• As $t \to t + dt$,

$$v \rightarrow v + dv$$
$$v^{2} \rightarrow v^{2} + 2v \, dv$$
$$v^{3} \rightarrow v^{3} + 3v^{2} \, dv$$

Another Face of Newton's 2nd Law

$$m\frac{dv}{dt} = F(x, v; t)$$
$$m\frac{dv}{dt}v = F \cdot v$$
$$m \, dv \, v = F \cdot v \, dt$$

Another Face of Newton's 2nd Law

$$m\frac{dv}{dt} = F(x, v; t)$$
$$m\frac{dv}{dt}v = F \cdot v$$
$$m \, dv \, v = F \cdot v \, dt$$

$$d\left(\frac{1}{2}mv^2\right) = F \cdot dx$$

Another Face of Newton's 2nd Law

$$m\frac{dv}{dt} = F(x, v; t)$$
$$m\frac{dv}{dt}v = F \cdot v$$
$$m dv v = F \cdot v dt$$

$$d\left(\frac{1}{2}mv^2\right) = F \cdot dx$$

Kinetic Energy-Work Theorem

$$\frac{dK = dW}{dt} = \frac{dW}{dt} = F \cdot v$$

The change in the kinetic energy equals to the work "done" to the system.

Kinetic Energy and Work

Kinetic Energy

$$K \equiv \frac{1}{2}mv^2$$

It is associated with the state of the particle in motion.

Work

$$dW = F \cdot dx$$
, $W = F \cdot L$

It is associated with the process that brings the change in the motion of the particle.

$$dK = dW$$

Kinetic Energy and Potential Energy

Kinetic Energy

$$K \equiv \frac{1}{2}mv^2$$

It is associated with the state of the particle in motion.

Potential Energy

$$dU = -dW = -F \cdot dx$$
, $U = -F \cdot L$

It is associated with the hypothetical process that brings the change in the motion of the particle.

$$dK + dU = 0$$
, $K + U = \text{constant}$

Force vs Potential Energy

$$dU = -dx \cdot F$$
$$U(x) = -\int_{x_0}^{x} dx' \cdot F(x')$$

Potential energy has the same information as force.

What is Energy?

- Some quantity associated with the state of the system.
- Some quantity that is conserved.
- Its expression takes many different forms:

$$K = \frac{1}{2}mv^2$$
, $U = mgx$, $U = \frac{1}{2}kx^2$, ...

- To be "interpreted" as a capacity to perform work.
- Mondern technology makes use of energy.

Linear Momentum

What is linear momentum?

What is linear momentum?

In classical mechanics, [linear] momentum is the product of the mass and velocity of an object.

(linear momentum) = (mass) × (velocity)

Wikipedia

What is linear momentum?

In classical mechanics, [linear] momentum is the product of the mass and velocity of an object. (linear momentum) = (mass) \times (velocity)

Wikipedia

So what?

Conservation of Linear Momentum (single particle)

Conservation of Linear Momentum (single particle)

Newton's 1st Law

If no net force acts on a body, the body's velocity cannot change.

Conservation of Linear Momentum (single particle)

 $(\text{linear momentum}) = (\text{mass}) \times (\text{velocity})$ Linear momentum is conserved!

Newton's 1st Law

If no net force acts on a body, the body's velocity cannot change.

Conservation of Linear Momentum (many particles)

$$egin{aligned} &rac{d}{dt}(m_1oldsymbol{v}_1) = oldsymbol{F}_1 + oldsymbol{G}_{12} \ &rac{d}{dt}(m_2oldsymbol{v}_2) = oldsymbol{F}_2 + oldsymbol{G}_{21} \end{aligned}$$

Conservation of Linear Momentum (many particles)

$$egin{aligned} &rac{d}{dt}(m_1 v_1) = F_1 + G_{12} \ &rac{d}{dt}(m_2 v_2) = F_2 + G_{21} \ &rac{d}{dt}(m_1 v_1 + m_2 v_2) = F_1 + F_2 \end{aligned}$$

 $P = P_1 + P_2 = m_1 v_1 + m_2 v_2$

Conservation of Linear Momentum (many particles)

Conservation of Linear Momentum

If no external net force acts on a system of particles, the total linear momentum of the system is conserved.

Angular Momentum

Densmore Shute bends the shaft (1938), Photograph by Harold Edgerton

Two nonidentical points define uniquely a (straight) line.

Two nonidentical points define uniquely a (straight) line.
Two crossing lines define uniquely a (flat) plane.

- Two nonidentical points define uniquely a (straight) line.
- Two crossing lines define uniquely a (flat) plane.
- Two crossing planes define uniquely a space.

...

- Two nonidentical points define uniquely a (straight) line.
- Two crossing lines define uniquely a (flat) plane.
- Two crossing planes define uniquely a space.

. . . .

We want to describe a rotational motion. What do we need?

Torque and Angular Momentum

Torque and Angular Momentum

 $(torque) = (radius) \times (force)$ (angular momentum) = $(radius) \times (linear momentum)$

Conservation of Angular Momentum (single particle)

Conservation of Angular Momentum (single particle)

Newton's 1st Law

If no *net* force acts on a body, the body's velocity cannot change.

Conservation of Angular Momentum (single particle)

Newton's 1st Law

If no *net* force acts on a body, the body's velocity cannot change.

Angular Momentum Conservation

If no net torque acts on a body, the body's angular momentum cannot change.

Summary

- Force, introduced by means of an axiom.
- Energy and work, defined by means conservation laws.
- Linear and angular momentum, defined by means of conservation laws.

References