GEST 011, Newton's Clock \& Heisenberg's Dice, Fall 2013

The Conservation Laws

(Mass, Force, Work, Energy, and Momentum)

Mahn-Soo Choi (Korea University)

Mass and Force

(in dictionaries)

the quantity of matter that a body contains, as measured by its acceleration under a given "force" or by the force exerted on it by a gravitational field.

a quantitative measure of an object's resistance to acceleration.

"Force"

(in dictionaries)

Incum Dolor Sil Amet
Lorem Lprern Eram
Eham
an influence tending to change the motion of a body or produce motion or stress in a stationary body. The magnitude of such an influence is often calculated by multiplying the "mass" of the body by its acceleration.

In physics, a force is any influence that causes a free body to undergo an acceleration. Force can ...cause an object with mass to change its velocity, i.e., to accelerate, or which can cause a flexible object to deform.

Gravitational Force

(Newton's Law)

Sir Isaac Newton (1642-1727)
Image from Wikipedia

A mass generates an gravitational field, and the field acts force on the other mass.

Coulomb Force

(charge at rest or in motion)

Charles-Augustin de
Coulomb (1736-1806)
Wikipedia

$$
\begin{aligned}
& \boldsymbol{F}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} e_{12} \\
& \frac{1}{4 \pi \epsilon_{0}}=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}
\end{aligned}
$$

A charge generates an electric field, and the electric field acts force on the other charge.

Lorentz Force

(charge in motion)

$$
\boldsymbol{F}=q \boldsymbol{v} \times \boldsymbol{B}
$$

A moving charge generates a magnetic field, and the field acts force on other moving charges.

Photo by Guy H. 200
El Matador at

What About Frictional Force?

Photo by Guy H. 200
El Matador at

Work and Energy

Work? What is It?

What Is Kinetic Energy?

Let's do some simple math!

- Consider a particle moving at velocity v at time t.

Let's do some simple math!

■ Consider a particle moving at velocity v at time t.
■ As $t \rightarrow t+d t$, the position
will change $x \rightarrow x+d x$.
Then:

$$
d x=?
$$

Let's do some simple math!

■ Consider a particle moving at velocity v at time t.
■ As $t \rightarrow t+d t$, the position will change $x \rightarrow x+d x$. Then:

$$
d x=v d t
$$

Let's do some simple math!

- Consider a particle moving at velocity v at time t.
■ As $t \rightarrow t+d t$, the position will change $x \rightarrow x+d x$.
Then:

$$
d x=v d t
$$

■ As $t \rightarrow t+d t$,

$$
\begin{aligned}
x & \rightarrow x+d x \\
5 x & \rightarrow 5 x+? \\
x^{2} & \rightarrow x^{2}+?
\end{aligned}
$$

Let's do some simple math!

- Consider a particle moving at velocity v at time t.
■ As $t \rightarrow t+d t$, the position will change $x \rightarrow x+d x$.
Then:

$$
d x=v d t
$$

■ As $t \rightarrow t+d t$,

$$
\begin{aligned}
x & \rightarrow x+d x \\
5 x & \rightarrow 5 x+5 d x \\
x^{2} & \rightarrow x^{2}+2 x d x
\end{aligned}
$$

Let's do some simple math!

■ Consider a particle moving at velocity v at time t.
■ As $t \rightarrow t+d t$, the position will change $x \rightarrow x+d x$.
Then:

$$
d x=v d t
$$

■ As $t \rightarrow t+d t$,

$$
\begin{aligned}
x & \rightarrow x+d x \\
5 x & \rightarrow 5 x+5 d x \\
x^{2} & \rightarrow x^{2}+2 x d x
\end{aligned}
$$

- Consider a particle accelerating with a.

Let's do some simple math!

■ Consider a particle moving at velocity v at time t.
■ As $t \rightarrow t+d t$, the position will change $x \rightarrow x+d x$.
Then:

$$
d x=v d t
$$

■ As $t \rightarrow t+d t$,

$$
\begin{aligned}
x & \rightarrow x+d x \\
5 x & \rightarrow 5 x+5 d x \\
x^{2} & \rightarrow x^{2}+2 x d x
\end{aligned}
$$

■ Consider a particle accelerating with a.

■ As $t \rightarrow t+d t$, the velocity will change $v \rightarrow v+d v$. Then:

$$
d v=?
$$

Let's do some simple math!

■ Consider a particle moving at velocity v at time t.
■ As $t \rightarrow t+d t$, the position will change $x \rightarrow x+d x$.
Then:

$$
d x=v d t
$$

■ As $t \rightarrow t+d t$,

$$
\begin{aligned}
x & \rightarrow x+d x \\
5 x & \rightarrow 5 x+5 d x \\
x^{2} & \rightarrow x^{2}+2 x d x
\end{aligned}
$$

■ Consider a particle accelerating with a.

■ As $t \rightarrow t+d t$, the velocity will change $v \rightarrow v+d v$. Then:

$$
d v=a d t
$$

Let's do some simple math!

■ Consider a particle moving at velocity v at time t.
■ As $t \rightarrow t+d t$, the position will change $x \rightarrow x+d x$.
Then:

$$
d x=v d t
$$

■ As $t \rightarrow t+d t$,

$$
\begin{aligned}
x & \rightarrow x+d x \\
5 x & \rightarrow 5 x+5 d x \\
x^{2} & \rightarrow x^{2}+2 x d x
\end{aligned}
$$

- Consider a particle accelerating with a.
■ As $t \rightarrow t+d t$, the velocity will change $v \rightarrow v+d v$. Then:

$$
d v=a d t
$$

■ As $t \rightarrow t+d t$,

$$
\begin{aligned}
v & \rightarrow v+d v \\
v^{2} & \rightarrow v^{2}+? \\
v^{3} & \rightarrow v^{3}+?
\end{aligned}
$$

Let's do some simple math!

- Consider a particle moving at velocity v at time t.
■ As $t \rightarrow t+d t$, the position will change $x \rightarrow x+d x$.
Then:

$$
d x=v d t
$$

■ As $t \rightarrow t+d t$,

$$
\begin{aligned}
x & \rightarrow x+d x \\
5 x & \rightarrow 5 x+5 d x \\
x^{2} & \rightarrow x^{2}+2 x d x
\end{aligned}
$$

- Consider a particle accelerating with a.
■ As $t \rightarrow t+d t$, the velocity will change $v \rightarrow v+d v$. Then:

$$
d v=a d t
$$

■ As $t \rightarrow t+d t$,

$$
\begin{aligned}
v & \rightarrow v+d v \\
v^{2} & \rightarrow v^{2}+2 v d v \\
v^{3} & \rightarrow v^{3}+3 v^{2} d v
\end{aligned}
$$

Another Face of Newton's $2^{\text {nd }}$ Law

$$
\begin{aligned}
m \frac{d v}{d t} & =F(x, v ; t) \\
m \frac{d v}{d t} v & =F \cdot v \\
m d v v & =F \cdot v d t
\end{aligned}
$$

Another Face of Newton's $2^{\text {nd }}$ Law

$$
\begin{aligned}
m \frac{d v}{d t} & =F(x, v ; t) \\
m \frac{d v}{d t} v & =F \cdot v
\end{aligned}
$$

$$
m d v v=F \cdot v d t
$$

Another Face of Newton's $2^{\text {nd }}$ Law

$$
\begin{aligned}
m \frac{d v}{d t} & =F(x, v ; t) \\
m \frac{d v}{d t} v & =F \cdot v \\
m d v v & =F \cdot v d t
\end{aligned}
$$

Kinetic Energy-Work Theorem

$$
\begin{gathered}
d K=d W \\
\frac{d K}{d t}=\frac{d W}{d t}=F \cdot v
\end{gathered}
$$

The change in the kinetic energy equals to the work "done" to the system.

Kinetic Energy and Work

Kinetic Energy

$$
K \equiv \frac{1}{2} m v^{2}
$$

It is associated with the state of the particle in motion.

Work

$$
d W=F \cdot d x, \quad W=F \cdot L
$$

It is associated with the process that brings the change in the motion of the particle.

$$
d K=d W
$$

Kinetic Energy and Potential Energy

Kinetic Energy

$$
K \equiv \frac{1}{2} m v^{2}
$$

It is associated with the state of the particle in motion.

Potential Energy

$$
d U=-d W=-F \cdot d x, \quad U=-F \cdot L
$$

It is associated with the hypothetical process that brings the change in the motion of the particle.

$$
d K+d U=0, \quad K+U=\text { constant }
$$

Force vs Potential Energy

$$
\begin{gathered}
d U=-d x \cdot F \\
U(x)=-\int_{x_{0}}^{x} d x^{\prime} \cdot F\left(x^{\prime}\right)
\end{gathered}
$$

Potential energy has the same information as force.

What is Energy?

■ Some quantity associated with the state of the system.
■ Some quantity that is conserved.
■ Its expression takes many different forms:

$$
K=\frac{1}{2} m v^{2}, \quad U=m g x, \quad U=\frac{1}{2} k x^{2}, \quad \cdots
$$

■ To be "interpreted" as a capacity to perform work.
■ Mondern technology makes use of energy.

Linear Momentum

What is linear momentum?

What is linear momentum?

In classical mechanics, [linear] momentum is the product of the mass and velocity of an object. $($ linear momentum $)=($ mass $) \times($ velocity $)$

What is linear momentum?

In classical mechanics, [linear] momentum is the product of the mass and velocity of an object. $($ linear momentum $)=($ mass $) \times($ velocity $)$

So what?

Conservation of Linear Momentum

(single particle)

Conservation of Linear Momentum

(single particle)

Newton's $1^{\text {st }}$ Law
If no net force acts on a body, the body's velocity cannot change.

Conservation of Linear Momentum

(single particle)

$($ linear momentum $)=($ mass $) \times($ velocity $)$

Linear momentum is conserved!

Newton's $1^{\text {st }}$ Law
If no net force acts on a body, the body's velocity cannot change.

Conservation of Linear Momentum

(many particles)

$$
\begin{aligned}
& \frac{d}{d t}\left(m_{1} \boldsymbol{v}_{1}\right)=\boldsymbol{F}_{1}+\boldsymbol{G}_{12} \\
& \frac{d}{d t}\left(m_{2} \boldsymbol{v}_{2}\right)=\boldsymbol{F}_{2}+\boldsymbol{G}_{21}
\end{aligned}
$$

Conservation of Linear Momentum

(many particles)

Conservation of Linear Momentum

 (many particles)

Conservation of Linear Momentum
If no external net force acts on a system of particles, the total linear momentum of the system is conserved.

Angular Momentum

A Glimpse of Geometry

A Glimpse of Geometry

■ Two nonidentical points define uniquely a (straight) line.

A Glimpse of Geometry

- Two nonidentical points define uniquely a (straight) line.
- Two crossing lines define uniquely a (flat) plane.

A Glimpse of Geometry

- Two nonidentical points define uniquely a (straight) line.
- Two crossing lines define uniquely a (flat) plane.

■ Two crossing planes define uniquely a space.

A Glimpse of Geometry

■ Two nonidentical points define uniquely a (straight) line.

- Two crossing lines define uniquely a (flat) plane.
- Two crossing planes define uniquely a space.

■...

We want to describe a rotational motion. What do we need?

Torque and Angular Momentum

Torque and Angular Momentum

$$
(\text { torque })=(\text { radius }) \times(\text { force })
$$

$($ angular momentum $)=($ radius $) \times($ linear momentum $)$

Conservation of Angular Momentum

(single particle)

Conservation of Angular Momentum

 (single particle)

Newton's $1^{\text {st }}$ Law

If no net force acts on a body, the body's velocity cannot change.

Conservation of Angular Momentum

 (single particle)

Newton's $1^{\text {st }}$ Law

If no net force acts on a body, the body's velocity cannot change.

Angular Momentum Conservation

If no net torque acts on a body, the body's angular momentum cannot change.

Summary

- Force, introduced by means of an axiom.

■ Energy and work, defined by means conservation laws.
■ Linear and angular momentum, defined by means of conservation laws.

