

Lynn Choi Korea University

Computer System Laboratory

Why do we need to synchronize clocks?

Data fusion

Elimination/integration of redundant data from multiple sensors

Synchronization for networking protocols

- Wakeup scheduling: for (2-partie) communication / for the latency
- Slot time, interframe spacing, timeouts
- TDMA scheduling

Event ordering

- The relative ordering (or time interval) between two events that happened on different machines in the network
- Localization (ToA, TDoA)
- Cooperative operation by multiple sensors
 - Velocity estimate of a moving object
 - Measure the time-of-flight of sound

Requirements for Wireless Sensor Networks

Energy efficiency

Need to consider energy efficiency without external energy source

Scalability

- Must be scalable to a large number of nodes (should be distributed)
- Robustness
 - Fault-tolerant, without human involvement

Cost and size

- Must be applicable to low-cost sensors
- Limited bandwidth, limited computation power and storage space

Accuracy and precision

- Depend on the objectives and the applications
- Scope
 - Local or global

Crystal Oscillator

Characteristics of crystal oscillators

Accuracy

- The difference between the expected frequency and actual frequencies. This difference is called the *frequency error*, whose maximum is specified by the manufacturer.
 - The maximum error is in the range of one part in 10^4 to 10^6 , which translates to $1 \sim 100 \,\mu$ s/s.
 - Two Berkeley Motes may have 4.75 µs/s of skew at the maximum, which leads to 17.1ms after 1 hour and 1 second after 58 hours

Stability

- An oscillator's tendency to stay at the same frequency.
- Short-term instability is caused by environmental factors such as temperature, supply voltage, and shock
- Long-term instability is caused by oscillator aging.

Clock can be modeled by drift and offset

- Drift (skew) denotes the rate (frequency) of the clock
- Offset (or phase offset) denotes the difference in value from the real time t
- ► For a node i in the network, its local clock can be represented as

 $C_i(t) = a_i t + b_i$

where $a_i(t)$ denotes the clock skew and

 $b_i(t)$ is the offset of node i's clock.

Using the equation, we can compare the local clocks of two nodes as

 $C_1(t) = a_{12} C_2(t) + b_{12}$

- Where a_{12} denotes the relative drift and b_{12} denotes the relative offset.
- If two clocks are perfectly synchronized, then their relative drift is 1 and the relative offset is zero

Distributed Time Synchronization

All network time synchronization schemes rely on some message exchanges between nodes

Nondeterminism in the network makes the synchronization task challenging

Sources of time synchronization errors

- Send time
 - Time required to transfer the message from the host to its network interface
- Access time
 - Time waiting for access to transmit the message
- Propagation time
 - This time is very small (1ns/foot) and can be ignored
- Receive time
 - The time required for the network interface to generate a message reception signal

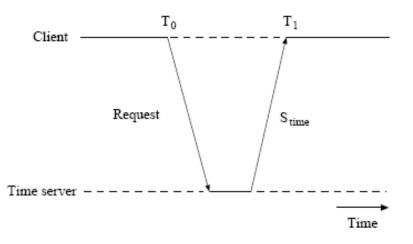
Existing Algorithms

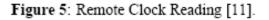
They vary primarily in their methods for estimating and correcting for these sources of errors

Most share a basic design

- A server periodically sends a message containing its current clock value to a client
 - If the typical latency from a server to a client is small compared to the desired accuracy, a simple one-way message is enough
- A common extension is to use a client request followed by a server's response.
 - By measuring the round-trip time of two packets, the client can estimate the one-way latency

Example: NTP


 NTP performs a large number of request/response messages to filter random delays (i.e. shortest round-trip time)



Remote Clock Reading (Cristian, 1989)

- A client sends a message to the server requesting a timestamp. Let this message be initiated at time T₀ local to the client.
- The server then returns a message holding the timestamp (S_{time}). S_{time} is the local time at the server.
- The client receives this message at its local time, say, T₁.
- The client then sets its time to S_{time} (accurate time from the server) + (T₁-T₀)/2 (time required to transmit the message).
- · To ensure accuracy, several round-trips are made and the average is used or the shortest round-trip is used.

Figure 4: Cristian's synchronization protocol.

http://it.korea.ac.kr

Offset Delay Estimation (used by NTP)

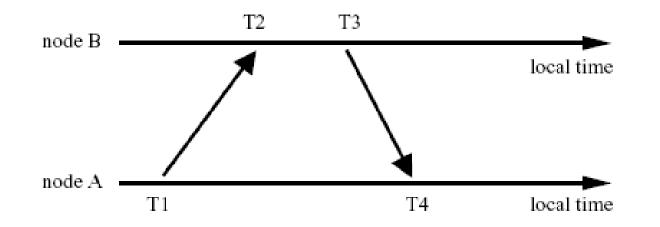
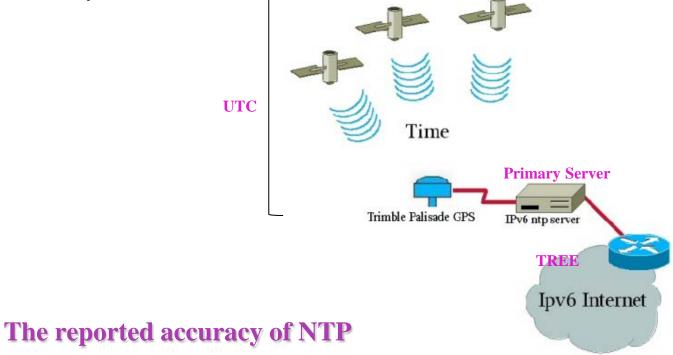


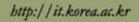
Figure 2: Two way message exchange between a pair of nodes.


$$\Delta = \frac{(T2 - T1) - (T4 - T3)}{2}; \ \ d = \frac{(T2 - T1) + (T4 - T3)}{2}$$

NTP (Network Time Protocol)

Hierarchy of NTP servers

- Primary server at the root synchronizes with the UTC
- A node synchronizes with its parent by performing several trials of offset delay estimation and choose the offset with the minimum delay (to compensate for the delay variance)


• 1 ~ 50ms (1ms for LAN, 28.7ms for WAN)

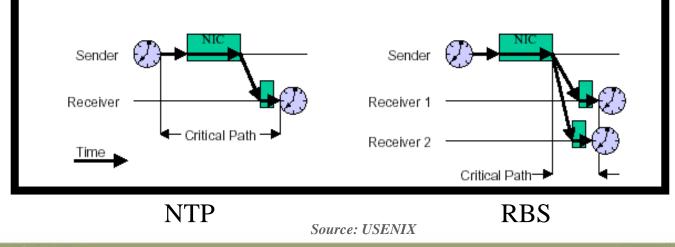
Computer System Laboratory

UTC (Coordinated Universal Time)

UTC

- Primary *time standard* by which the world regulates clocks and time
 - Similar to GMT (Greenwich Mean Time), which is no longer precisely defined
- Based on *International Atomic Time*, a time standard calculated using a weighted average of signals from atomic clocks of nearly 70 national labs around the world
 - Occasionally adjusted by adding a *leap second* in order to keep up with Earth's rotation.
- *The* Standard
 - Used for Internet (NTP), aviation, traffic control, weather forecast, etc.

NTP (Network Time Protocol)


Variations of NTP

- ► SNTP (Simple NTP)
 - Less accurate, but simpler
- ▶ IEEE 1588
 - For measurement and control on small networks
 - Only for synchronization within subnet (no router)
 - Accuracy of several hundred nanoseconds
- ► GPS
 - Accuracy of 10ns

Synchronization Protocols for WSN

RBS (Reference Broadcast Synchronization), OSDI,2002

- Receiver to receiver synchronization (no timestamp)
 - A message broadcast at the physical layer will arrive at a set of receivers with very little variability in its delay
 - Transmitter broadcasts a reference packet to two receivers
 - Each receiver records the reception time according to its local clock
 - The receivers exchange their observations
 - Eliminate the largest sources of error (send time and access time) from the critical path
 - Issues: O(n²) message exchanges for a single-hop network of n nodes

Computer System Laboratory

Synchronization Protocols for WSN

TPSN (Timing -Sync Protocol for Sensor Networks), SenSys 2003

- Two-phase protocols
 - Level discovery phase create a tree
 - Synchronization phase
 - Starting from the root, each node synchronizes with its parent by using offset delay estimation
- Implemented on Berkeley's Mica architecture
- Use MAC layer time-stamping
 - Eliminate timestamp uncertainty due to send and access time
- Claims that uncertainty at the sender contributes little to the total synchronization error and they can outperform RBS

Lightweight synchronization schemes for WSN

- ► Tiny-Sync & Mini-Sync, WCNC 2003
- LTS (Lightweight Tree-based Synchronization), WSNA 2003
- ► FTSP (Flooding Time Synchronization Protocol), SenSys 2004

Lightweight Schemes

Tiny/Mini-Sync

- Use only a subset of data points for simplification but compensate with
 - Multiple round-trip measurement and a line-fitting technology to obtain offset and rate difference of two nodes
- ▶ The scheme considers not only clock offset but also *clock skew*
 - Use a history of clock information used in the past synchronization processes
- Mini-sync is an extension of Tiny-Sync
 - Find a better solution but with an increase in complexity

LTS

- Only for nodes that need synchronization
- Propose two variations: on-demand and proactive algorithms

Lightweight Schemes

FTSP

- ► The broadcast-based approach
 - The flooding-based scheme causes unexpected collisions and useless packet transmissions.
- ► FTSP reduces the number of message per node to one.
- Do not adjust error due to the message delay.