
Microprocessor Microarchitecture

Instruction Fetch

Lynn Choi

Dept. Of Computer and Electronics Engineering

Instruction Fetch w/ branch prediction

 On every cycle, 3 accesses are done in parallel

 Instruction cache access

 Branch target buffer access

 If hit, determines that it is a branch and provides target address

 Else, use fall-through address (PC+4) for the next sequential access

 Branch prediction table access

 If taken, instructions after the branch are not sent to back end and next fetch

starts from target address

 If not taken, next fetch starts from fall-through address

Motivation

 Wider issue demands higher instruction fetch rate

 However, Ifetch bandwidth limited by
 Basic block size

 Average block size is 4 ~ 5 instructions

 Need to increase basic block size!

 Branch prediction hit rate

 Cost of redirecting fetching

 More accurate prediction is needed

 Branch throughput

 Multiple branch prediction per cycle is necessary for wide-issue superscalar!

 Can fetch multiple contiguous basic blocks

 The number of instructions between taken branches is 6 ~ 7

 Limited by instruction cache line size

 Taken branches

 Fetch mechanism for non-contiguous basic blocks

 Instruction cache hit rate

 Instruction prefetching

Solutions

 Solutions

 Increase basic block size (using a compiler)

 Trace scheduling, superblock scheduling, predication

 Hardware mechanism to fetch multiple non-consecutive basic blocks are

needed!

 Multiple branch predictions per cycle

 Generate fetch addresses for multiple basic blocks

 Non-contiguous instruction alignment

 Need to fetch and align multiple noncontiguous basic blocks and pass them to the

pipeline

Current Work

 Existing schemes to fetch multiple basic blocks per cycle

 Branch address cache + multiple branch prediction - Yeh

 Branch address cache

 Natural extension of branch target buffer

 Provides the starting addresses of the next several basic blocks

 Interleaved instruction cache organization to fetch multiple basic blocks per

cycle

 Trace cache - Rotenberg

 Caching of dynamic instruction sequences

 Exploit locality of dynamic instruction streams, eliminating the need to fetch

multiple non-contiguous basic blocks and the need to align them to be

presented to the pipeline

Branch Address Cache Yeh & Patt

 Hardware mechanism to fetch multiple non-consecutive basic

blocks are needed!

 Multiple branch prediction per cycle using two-level adaptive predictors

 Branch address cache to generate fetch addresses for multiple basic blocks

 Interleaved instruction cache organization to provide enough bandwidth to

supply multiple non-consecutive basic blocks

 Non-contiguous instruction alignment

 Need to fetch and align multiple non-contiguous basic blocks and pass them to

the pipeline

Multiple Branch Predictions

IEEE All rights reserved

Multiple Branch Predictor

 Variations of global schemes are proposed

 Multiple Branch Global Adaptive Prediction using a Global Pattern History

Table (MGAg)

 Multiple Branch Global Adaptive Prediction using a Per-Set Pattern History

Table (MGAs)

 Multiple branch prediction based on local schemes

 Require more complicated BHT access due to sequential access of

primary/secondary/tertiary branches

Multiple Branch Predictors

IEEE All rights reserved

Branch Address Cache

 Only a single fetch address is used to access the BAC which

provides multiple target addresses

 For each prediction level L, BAC provides 2L of target address and fall-

through address

 For example, 3 branch predictions per cycle, BAC provides 14 (2 + 4 + 8) target

addresses

 For 2 branch predictions per cycle, TAC provides

 TAG

 Primary_valid, Primary_type

 Taddr, Naddr

 ST_valid, ST_type, SN_valid, SN_type

 TTaddr, TNaddr, SNaddr, NNaddr

ICache for Multiple BB Access

 Two alternatives

 Interleaved cache organization

 As long as there is no bank conflict

 Increasing the number of banks reduces conflicts

 Multi-ported cache

 Expensive

 ICache miss rate increases

 Since more instructions are fetched each cycle, there are fewer cycles

between Icache misses

 Increase associativity

 Increase cache size

 Prefetching

Fetch Performance

IEEE All rights reserved

Issues

 Issues of branch address cache

 I cache to support simultaneous access to multiple non-contiguous cache

lines

 Too expensive (multi-ported caches)

 Bank conflicts (interleaved organization)

 Complex shift and alignment logic to assemble non-contiguous blocks into

sequential instruction stream

 The number of target addresses stored in branch address cache increases

substantially as you increase the branch prediction throughput

Trace Cache Rotenberg & Smith

 Idea

 Caching of dynamic instruction stream (Icache stores static instruction stream)

 Based on the following two characteristics

 Temporal locality of instruction stream

 Branch behavior

 Most branches tend to be biased towards one direction or another

 Issues

 Redundant instruction storage

 Same instructions both in Icache and trace cache

 Same instructions among trace cache lines

Trace Cache Rotenberg & Smith

 Organization

 A special top-level instruction cache each line of which stores a trace, a

dynamic instruction stream sequence

 Trace

 A sequence of the dynamic instruction stream

 At most n instructions and m basic blocks

 n is the trace cache line size

 m is the branch predictor throughput

 Specified by a starting address and m - 1 branch outcomes

 Trace cache hit

 If a trace cache line has the same starting address and predicted branch outcomes

as the current IP

 Trace cache miss

 Fetching proceeds normally from instruction cache

Trace Cache Organization

IEEE All rights reserved

Design Options

 Associativity

 Path associativity

 The number of traces that start at the same address

 Partial matches

 When only the first few branch predictions match the branch flags, provide a

prefix of trace

 Indexing

 Fetch address vs. fetch address + predictions

 Multiple fill buffers

 Victim trace cache

Experimentation

 Assumption

 Unlimited hardware resources

 Constrained by true data dependences

 Unlimited register renaming

 Full dynamic execution

 Schemes

 SEQ1: 1 basic block at a time

 SEQ3: 3 consecutive basic blocks at a time

 TC: Trace cache

 CB: Collapsing buffer (Conte)

 BAC: Branch address cache (Yeh)

Performance

IEEE All rights reserved

Trace Cache Miss Rates

 Trace Miss Rate - % accesses missing TC

 Instruction miss rate - % instructions not supplied by TC

IEEE All rights reserved

Exercises and Discussion

 Itanium uses instruction buffer between FE and BE?

What is the advantages of using this structure?

 How can you add path associativity to the normal trace

cache?

