# Communication Systems II

[KECE322\_01] <2012-2nd Semester>

Lecture #10
2012. 09. 26
School of Electrical Engineering
Korea University
Prof. Young-Chai Ko

## Outline

- Matched filter
- Optimum detection for binary antipodal signals

Prof. Young-Chai Ko

### Correlation-Type Demodulator for Binary Orthogonal Signals

Signal waveform

$$r(t) = s_m(t) + n(t), \quad 0 \le t \le T_b, \quad m = 1, 2.$$

where 
$$s_1(t) = \sqrt{\mathcal{E}_b}\psi_1(t)$$
, and  $s_2(t) = \sqrt{\mathcal{E}_b}\psi_2(t)$ 

Note that in vector form, the transmit signals are

$$\mathbf{s}_1 = [\sqrt{\mathcal{E}_b}, 0], \text{ and } \mathbf{s}_2 = [0, \sqrt{\mathcal{E}_b}]$$

Correlation-type demodulator



 $\mathbf{y} = [y_1, y_2]$ 

Correlator output waveforms

$$y_m(t) = \int_0^t r(\tau)\phi_m(\tau) d\tau, \ m = 1, 2.$$

 $\blacksquare$  Sampled signal at  $t = T_b$ 

$$y_m = y_m(T_b) = \int_0^{T_b} r(\tau)\phi_m(\tau) d\tau, \ m = 1, 2.$$

• For  $s_1(t) = s_{11}\phi_1(t)$ , so that  $r(t) = s_{11}\psi_1(t) + n(t)$ .

$$y_1 = \int_0^{T_b} [s_{11}\psi_1(\tau) + n(\tau)]\psi_1(\tau) d\tau = s_{11} + n_1 = \sqrt{E_b} + n_1$$

$$y_2 = \int_0^{T_b} [s_{11}\psi_1(t) + n(t)]\psi_2(t) dt = n_2$$

where

$$n_1 = \int_0^{T_b} n(\tau) \psi_1(\tau) d\tau$$

$$n_2 = \int_0^{T_b} n(\tau)\psi_2(\tau)d\tau$$

Sampled output in vector form if  $s_1(t)$  is transmitted:

$$\mathbf{y} = [y_1, y_2] = [\sqrt{\mathcal{E}_b} + n_1, n_2]$$

Sampled output in vector form if  $s_2(t)$  is transmitted:

$$\mathbf{y} = [y_1, y_2] = [n_1, \sqrt{\mathcal{E}_b} + n_2]$$

- Statistical characteristic of the observed signal vector y
  - ullet  $n_1$  and  $n_2$  are zero-mean Gaussian random variable with variance  $\,\sigma^2=N_0/2$  .

Correlation between 
$$n_1$$
 and  $n_2$  
$$n_1, n_2 \sim \mathcal{N}\left(0, \frac{N_0}{2}\right)$$

$$E[n_1 n_2] = \int_0^{T_b} \int_0^{T_b} E[n(t)n(\tau)\psi_1(t)\psi_2(\tau) \, dt \, d\tau]$$

$$= \int_0^{T_b} \int_0^{T_b} \frac{N_0}{2} \delta(t-\tau)\psi_1(t)\psi_2(\tau) \, dt \, d\tau$$

$$= \frac{N_0}{2} \int_0^{T_b} \psi_1(t)\psi_2(\tau) \, dt \, d\tau = 0.$$

Conditional joint PDF

$$f(y_1, y_2 | \mathbf{s}_1) = \left(\frac{1}{\sqrt{\pi N_0}}\right)^2 \exp\left[-\frac{(y_1 - \sqrt{\mathcal{E}_b})^2 + y_2^2}{N_0}\right]$$

$$f(y_1, y_2 | \mathbf{s}_2) = \left(\frac{1}{\sqrt{\pi N_0}}\right)^2 \exp\left[-\frac{y_1^2 + (y_2 - \sqrt{\mathcal{E}_b})^2}{N_0}\right]$$

$$f(y_1, y_2 | \mathbf{s}_2) = \left(\frac{1}{\sqrt{\pi N_0}}\right)^2 \exp\left[-\frac{y_1^2 + (y_2 - \sqrt{\mathcal{E}_b})^2}{N_0}\right]$$

Conditional PDF when  $s_1(t)$  is transmitted.



## Matched Filter Type Demodulator

Binary antipodal signals

$$r(t) = s_m \psi(t) + n(t), \quad 0 \le t \le T_b, \quad m = 1, 2$$



Impulse response of matched filter

$$h(t) = \psi(T_b - t), \quad 0 \le t \le T_b$$

Filter output

$$y(t) = \int_0^t r(\tau)h(t-\tau) d\tau$$

Sampling at time  $t=T_b$ 

$$y(T_b) = \int_0^{T_b} r(\tau)h(T_b - \tau) d\tau$$

Since 
$$h(T_b - \tau) = \psi(\tau)$$

the sampled output signal is

$$y(T_b) = \int_0^{T_b} [s_m \psi(\tau) + n(\tau)] \psi(\tau) d\tau$$
$$= s_m + n$$

where

$$n = \int_0^{T_b} n(\tau)\psi(\tau) d\tau$$

♦ The sampled output is exactly the same as the output obtained with a cross-correlator.

## Matched Filter

- Definition:
  - A filter whose impulse response h(t) = s(T-t), where s(t) is assumed to be confined to the time interval  $0 \le t \le T$ .

### Example



$$h(t) = s(T - t)$$

$$y(t) = s(t) * h(t)$$

$$A^{2}T$$

$$T$$

$$2T$$

## Binary Orthogonal Signals with Matched Filter

Binary orthogonal signal waveforms

$$r(t) = s_m(t) + n(t), \ 0 \le t \le T_b, \ m = 1, 2$$

where

$$\langle s_1(t), s_2(t) \rangle = \int_0^{T_b} s_1(t)s_2(t) dt = 0$$

Consider matched filters with impulse response given as

$$h_1(t) = \psi_1(T_b - t), \quad 0 \le t \le T_b$$
  
 $h_2(t) = \psi_2(T_b - t), \quad 0 \le t \le T_b$ 

Output at the matched filter

$$y_m(t) = \int_0^t r(\tau)h_m(t-\tau) d\tau, \ m = 1, 2.$$

#### Sampled output

$$y_m = y_m(T_b) = \int_0^{T_b} r(\tau) h_m(T_b - \tau) d\tau$$
  
=  $\int_0^{T_b} r(\tau) \psi_m(\tau) d\tau$ ,  $m = 1, 2$ 



When  $s_1(t)$  was transmitted,

$$y_1 = s_{11} + n_1$$

$$y_2 = n_2$$

## Properties of Matched Filter

- If a signal s(t) is corrupted by AWGN, the filter with the impulse response matched to s(t) maximizes the output signal-to-noise ratio (SNR).
- Proof



Filter output signal

$$y(t) = \int_0^t r(\tau)h(t-\tau) d\tau$$
$$= \int_0^t s(\tau)h(t-\tau) d\tau + \int_0^t n(\tau)h(t-\tau) d\tau$$

ullet At the sampling instant t=T, the signal and noise components are

$$y(T) = \int_0^T s(\tau)h(T-\tau)\ d\tau + \int_0^T n(\tau)h(T-\tau)\ d\tau$$
 
$$= \underbrace{y_s(T)}_{\text{Signal}} + \underbrace{y_n(T)}_{\text{noise}}_{\text{component component}}$$

Output Signal-to-Noise Ratio (SNR)

$$\left(\frac{S}{N}\right)_0 = \frac{y_s^2(T)}{E[y_n^2(T)]}$$

- The problem is to select the filter impulse response that maximizes the output SNR.
- The answer is that the matched filter maximizes the output SNR.

Variance of the noise term at the output of the filter

$$E[y_n^2(T)] = \int_0^T \int_0^T E[n(\tau)n(t)]h(T-\tau)h(T-t) dt d\tau$$

$$= \frac{N_0}{2} \int_0^T \int_0^T \delta(t-\tau)h(T-\tau)h(T-t) dt d\tau$$

$$= \frac{N_0}{2} \int_0^T h^2(T-t) dt$$

Output SNR

$$\left(\frac{S}{N}\right)_{o} = \frac{\left[\int_{0}^{T} s(\tau)h(T-\tau) d\tau\right]^{2}}{\frac{N_{0}}{2} \int_{0}^{T} h^{2}(T-t) dt} = \frac{\left[\int_{0}^{T} h(\tau)s(T-\tau) d\tau\right]^{2}}{\frac{N_{0}}{2} \int_{0}^{T} h^{2}(T-t) dt}$$

Cauchy-Schwartz inequality

$$\left[ \int_{-\infty}^{\infty} g_1(t)g_2(t) \, dt \right]^2 \le \int_{-\infty}^{\infty} g_1^2(t) \, dt \int_{-\infty}^{\infty} g_2^2(t) \, dt,$$

where equality holds when  $g_1(t) = Cg_2(t)$  for any arbitrary constant C.

- If we set  $g_1(t) = h(t)$  and  $g_2(t) = s(T-t)$ , it is clear that the output SNR is maximized when h(t) = Cs(T-t), i.e., h(t) is matched to the signal s(t).
  - The scale factor C drops out of the expression for  $(S/N)_o$ , since it appears in both the numerator and the denominator.
- Output (maximum) SNR obtained with the matched filter is

$$\left(\frac{S}{N}\right)_0 = \frac{2}{N_0} \int_0^T s^2(t) dt = \frac{2\mathcal{E}_s}{N_0}$$

where  $\mathcal{E}_s$  is the energy of the signal s(t) .

Note that the output SNR from the matched filter depends on the energy of the waveform s(t) but not on the detailed characteristics of s(t).

#### Example of binary PPM

#### Binary PPM signals

$$s_m(t) = s_{m1}\psi_1(t) + s_{m2}\psi_2(t), \quad j = 1, 2$$







$$\psi_2(t)$$

$$\sqrt{2/T_b}$$

$$T_b/2 \quad T_b$$

$$s_{11} = \int_{0}^{T_{b}} s_{1}(t)\psi_{1}(t) dt = \sqrt{E_{b}}$$

$$s_{12} = \int_{0}^{T_{b}} s_{1}(t)\psi_{2}(t) dt = 0$$

$$s_{21} = \int_{0}^{T_{b}} s_{2}(t)\psi_{1}(t) dt = 0$$

$$s_{22} = \int_{0}^{T_{b}} s_{2}(t)\psi_{2}(t) dt = \sqrt{E_{b}}$$

Matched filter

$$h_1(t) = \psi_1(T_b - t), \quad h_2(t) = \psi_2(T_b - t)$$



ullet If  $s_1(t)$  is transmitted, the sampled output signals are

$$\mathbf{y} = [y_1, y_2] = [\sqrt{E_b} + n_1, n_2]$$

where 
$$n_k = \int_0^{T_b} n(t) \psi_k(t) \ dt$$
 with  $n_k \sim \mathcal{N}\left(0, \frac{N_0}{2}\right)$ 

Output SNR for the first matched filter

$$\left(\frac{S}{N}\right)_o = \frac{(\sqrt{\mathcal{E}_b})^2}{N_0/2} = \frac{2\mathcal{E}_b}{N_0}$$

### Performance of the Optimum Receiver: Binary Antipodal Signals

Output of the demodulator in any signal bit interval

$$y = s_m + n, \quad m = 1, 2$$



- Decision rule
  - If  $y > \alpha$ , declare  $s_1(t)$  was transmitted.
  - If  $y < \alpha$ , declare  $s_2(t)$  was transmitted.

Average probability of error

$$P_2(\alpha) = P(s_1) \int_{-\infty}^{\alpha} f(y|s_1) \, dy + P(s_2) \int_{\alpha}^{\infty} f(y|s_2) \, dy$$

- Not we want to find the optimum threshold value  $\alpha$ , say  $\alpha^*$  which minimizes the average probability of error.
- $\blacksquare$  Optimum threshold can by finding the solution of  $\left.\frac{dP_2(\alpha)}{d\alpha}=0\right|_{\alpha=\alpha^*}$

That is,

$$P(s_1)f(\alpha|s_1) - P(s_2)f(\alpha|s_2) = 0$$

or equivalently,

$$\frac{f(\alpha|s_1)}{f(\alpha|s_2)} = \frac{P(s_2)}{P(s_1)}$$

Since  $f(\alpha|s_m)$  is Gaussian PDF with mean  $\sqrt{\mathcal{E}_b}$  for  $s_1$  and  $-\sqrt{\mathcal{E}_b}$  for  $s_2$ , we have

$$e^{-(\alpha - \sqrt{\mathcal{E}_b})^2/N_0} e^{-(\alpha + \sqrt{\mathcal{E}_b})^2/N_0} = \frac{P(s_2)}{P(s_1)}$$

Clearly, the optimum value of the threshold is

$$\alpha^* = \frac{N_0}{4\sqrt{\mathcal{E}_b}} \ln \frac{P(s_2)}{P(s_1)}$$

For the case of  $P(s_1) = P(s_2)$ , the optimum threshold is zero. In this case, the average probability of error is

$$P_{2} = \frac{1}{2} \int_{-\infty}^{0} f(y|s_{1}) dy + \frac{1}{2} \int_{0}^{\infty} f(y|s_{2}) dy = \int_{-\infty}^{0} f(y|s_{1}) dy$$
$$= \frac{1}{\sqrt{\pi N_{0}}} \int_{-\infty}^{0} e^{-(y-\sqrt{\mathcal{E}_{b}})^{2}/N_{0}} dy$$

Change of the variable as  $\,x=(y-\sqrt{\mathcal{E}_b})/\sqrt{N_0/2}\,$ 

$$P_{2} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-\sqrt{2\mathcal{E}_{b}/N_{0}}} e^{-x^{2}/2} dx = Q\left(\sqrt{\frac{2\mathcal{E}_{b}}{N_{0}}}\right)$$