Quantum Mechanics II

Assignment 5

Due: November 14 (Thursday), 2013

1. A particle is in the nth state of a one-dimensional harmonic oscillator with the energy eigenvalues $E_{n}=\hbar \omega(n+1 / 2)$. Suppose the system is perturbed by

$$
V(t)= \begin{cases}0, & t<0 \tag{1}\\ \lambda x \sin \omega_{1} t e^{-\alpha t}, & t \geq 0\end{cases}
$$

Calculate the transition probability to the m th state. What are the possible m values for nonzero transitions?
2. A particle with electric charge q is placed in a magnetic field $\mathbf{B}=$ $(0,0, B)$ and an electric field $\mathbf{E}=(E, 0,0)$. What are the energy eigenvalues of the system? (Choose the gauge properly.)
3. Compute the $2 p \rightarrow 1 s$ transition rate for a harmonic oscillator. In this case, we are given that the energy eigenvalues are $E=\hbar \omega(n+3 / 2)$ and the energy quantum number $n=2 n_{r}+l$ with $n_{r}=0,1,2, \cdots$, $l=0,1,2, \cdots$.

