Numerical Analysis MTH614

Spring 2012, Korea University

Finite Difference method

Talyor series

Talyor series can provide useful polynomial approximation such as finite difference scheme, interpolations and so on.

- Taylor's Theorem in one variable

Let $f(x)$ be a function with derivatives of all orders in some interval containing a as an interior point. Then

$$
\begin{aligned}
f(x)= & f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+ \\
& \ldots \frac{f^{n}(x)}{n!}(x-a)^{n}+\frac{f^{n+1}(\xi)}{(n+1)!}(x-a)^{n+1} .
\end{aligned}
$$

Proof)
We start with the fundamental idea of calculus,

$$
\begin{align*}
& f\left(x_{0}+h\right)=f\left(x_{0}\right)+\int_{x_{0}}^{x_{0}+h} f^{\prime}(\tau) d \tau \tag{1}\\
& \text { and we let } d \tau=-d\left(x_{0}+h-\tau\right) \tag{2}
\end{align*}
$$

Integrate by parts,

$$
\begin{equation*}
f\left(x_{0}+h\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) h+\int_{x_{0}}^{x_{0}+h} f^{\prime \prime}(\tau)\left(x_{0}+h-\tau\right) d \tau \tag{3}
\end{equation*}
$$

The last term is

$$
\begin{gather*}
\int_{x_{0}}^{x_{0}+h} f^{\prime \prime}(\tau)\left(x_{0}+h-\tau\right) d \tau=-\frac{1}{2} \int_{x_{0}}^{x_{0}+h} f^{\prime \prime}(\tau) d\left(x_{0}+h-\tau\right)^{2} \tag{4}\\
\quad=\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) h^{2}+\frac{1}{2} \int_{x_{0}}^{x_{0}+h} f^{\prime \prime \prime}(\tau)\left(x_{0}+h-\tau\right)^{2} d \tau \tag{5}
\end{gather*}
$$

Together with the above equation, we have

$$
\begin{equation*}
f\left(x_{0}+h\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) h+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) h^{2}+\frac{1}{2} \int_{x_{0}}^{x_{0}+h} f^{\prime \prime \prime}(\tau)\left(x_{0}+h \tau\right) d \tau \tag{6}
\end{equation*}
$$

For example, we compare with the first and second Taylor approximations using MATLAB.

If the function $f(x)=e^{x}+1$ is evaluated at $c=0$ with the Talyor approximation.

Linear equation : $f(x)=2+x$,
Quadratic equation: $f(x)=2+x+x^{2}$.
The following is a MATLAB script.

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Taylor_one.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear; clc; clf; x=linspace(-1,1,20);
plot(x, exp(x)+1,'k-',x,2+x,'k--', x, 2+x+x. '2/2,'k-.')
legend('f(x)','1st order','2nd order',2)
```

The domain x of the function is equally spaced using "linspace". Plot command draws one line and curve with the same domain x .

- Taylor's Theorem in two variables

Now consider functions of two variables and a point $\left(x_{0}, y_{0}\right)$. We would like to derive a similar formula for an approximation of f by a polynomial near $\left(x_{0}, y_{0}\right)$. i.e. we approximate $f\left(x_{0}+h, y_{0}+k\right)$, where h and k both small real numbers.

Note that the last term is approximation error.

If we differentiate the function at $\left(x_{0}, y_{0}\right)$ by the chain rule, then we get for the polynomial of order 2.

$$
\begin{aligned}
f\left(x_{0}+h, y_{0}+k\right) & =f\left(x_{0}, y_{0}\right)+\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right) f\left(x_{0}, y_{0}\right) \\
& +\frac{1}{2!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{2} f\left(x_{0}, y_{0}\right)+\cdots \\
& +\frac{1}{(n-1)!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{n-1} f\left(x_{0}, y_{0}\right) \\
& +\frac{1}{n!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{n} f\left(x_{0}+\theta h, y_{0}+\theta k\right), \quad 0<\theta<1
\end{aligned}
$$

For example, we compare with the first and second Taylor approximations in two variables. Having a function $f(x, y)=e^{x+y}+1$, then we can differentiate at $\left(x_{0}, y_{0}\right)=(0,0)$, as follows

$$
\begin{aligned}
& f_{x}(x, y)=f_{y}(x, y)=e^{x+y}, f_{x x}(x, y)=f_{y y}(x, y)=f_{x y}(x, y)=e^{x+y}, \\
& \quad f(0,0)=2,
\end{aligned}
$$

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Taylor_two .m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear; clc; clf; n=20; x=linspace(-1,1,n); y=x;
[xx yy]=meshgrid(x,y);
```

```
\(\operatorname{mesh}(x x, y y, \exp (x x+y y)+1)\)
hold on
mesh ( \(\mathrm{xx}, \mathrm{yy}, 2+\mathrm{xx}+\mathrm{yy}\) )
for \(i=1: 20\)
    for \(\mathrm{j}=1: 20\)
        \(T(i, j)=2+x(i)+y(j)+0.5 *(x(i) \wedge 2+2 * x(i) * y(j)+y(j) \wedge 2) ;\)
    end
end
mesh ( \(\mathrm{xx}, \mathrm{yy}, \mathrm{T}\) )
```


Numerical Differentiation

The derivative of the function $\mathrm{f}(\mathrm{x})$ wit respect to the x.

$$
\begin{equation*}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \tag{1}
\end{equation*}
$$

We define a "forward" difference

$$
\begin{equation*}
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}:=D_{h} f(x) \tag{2}
\end{equation*}
$$

where h is called the step size.
And its error term is given as,

$$
\begin{equation*}
f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}-\frac{h}{2} f^{\prime \prime}(\xi)=D_{h} f(x)-\frac{h}{2} f^{\prime \prime}(\xi) \tag{3}
\end{equation*}
$$

We also denote a "backward" difference approximation
$D_{h} f(x)=\frac{f(x)-f(x-h)}{h}$

Centered difference approximation of the first derivative,

$$
\begin{align*}
& f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)+\frac{h^{3}}{6} f^{(3)}(x)+O\left(h^{4}\right), \tag{1}\\
& f(x-h)=f(x)-h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)-\frac{h^{3}}{6} f^{(3)}(x)+O\left(h^{4}\right) . \tag{2}
\end{align*}
$$

We obtain that

$$
\begin{align*}
& f(x+h)-f(x-h)=2 h f^{\prime}(x)+\frac{h^{3}}{3} f^{(3)}(x)+O\left(h^{4}\right) \tag{3}\\
& f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}-\frac{h^{2}}{6} f^{(3)}(\xi) \tag{4}
\end{align*}
$$

The Equation is called a "centered" finite difference representation,

$$
\begin{align*}
D_{h} f(x) & :=\frac{f(x+h)-f(x-h)}{2 h} \tag{5}\\
f^{\prime}(x) & =\frac{f(x+h)-f(x-h)}{2 h}-\frac{h^{2}}{6} f^{(3)}(\xi) \tag{6}
\end{align*}
$$

Note that the truncation error is of the order h^{2} in contrast to the forward and backward approximation of the order of h.

