
Operating System

Chapter 11. I/O Management and
 Disk Scheduling

Lynn Choi
School of Electrical Engineering

Categories of I/O Devices

 I/O devices can be grouped into 3 categories
 Human readable devices

− Suitable for communicating with the computer user
− Printers, terminals, video display, keyboard, mouse

 Machine readable devices
− Suitable for communicating with electronic equipment
− Disk drives, USB devices, sensors, controllers

 Communication devices
− Suitable for communicating with remote devices
− Modems, digital line drivers

Data Rates

 Source: Pearson

Organization of I/O Function
 Three techniques for performing I/O are
 Programmed I/O

 The processor issues an I/O command on behalf of a process to an I/O
module; that process then busy waits for the operation to be completed
before proceeding

 Interrupt-driven I/O
 The processor issues an I/O command on behalf of a process

− If non-blocking – processor continues to execute instructions from the process
that issued the I/O command

− If blocking – the next instruction the processor executes is from the OS, which
will put the current process in a blocked state and schedule another process

 Direct Memory Access (DMA)
 The processor sends a request for a block transfer to the DMA module, which

then controls the exchange of data between main memory and an I/O
module. After the transfer, the DMA module interrupts the processor.

Techniques for Performing I/O

 Source: Pearson

Evolution of I/O Function
 Processor directly controls a peripheral device
 Programmed I/O without interrupt

 An I/O controller or I/O module is added

 Programmed I/O with interrupt
 Same configuration as step 2, but now interrupts are employed

 DMA
 The I/O module is given direct control of memory via DMA

 I/O channel
 The I/O module is enhanced to become a separate processor, with a

specialized instruction set tailored for I/O

 I/O processor
 The I/O module has a local memory of its own and is, in fact, a computer in

its own right

DMA Block Diagram
 Processor issues a

command to DMA
module with the following
information
 Read or Write
 The address of IO device
 The starting address of

memory
 The number of words to

transfer

 DMA module transfers
the entire block and after
completion, it interrupts
the processor

 Source: Pearson

DMA Alternative Configurations

 Source: Pearson

Design Objectives

 Efficiency
 Major effort in I/O design
 Important because I/O operations often form a bottleneck
 Most I/O devices are extremely slow compared with main memory

and the processor
 The area that has received the most attention is disk I/O

 Generality
 Desirable to handle all devices in a uniform manner
 The way processes view I/O devices and the way the operating

system manages I/O devices and operations
 Hide the details of device I/O so that user processes and upper levels

of OS see devices in terms of general functions such as read, write,
open, and close

 Diversity of devices makes it difficult to achieve true generality

Hierarchical Design
 Hierarchical nature of modern operating systems

 Operating system functions should be separated according to their
complexity, timescale, and their level of abstraction

 Leads to an OS organization into a series of layers
 Each layer performs a related subset of the functions and relies on the next

lower layer to perform more primitive functions and to conceal the details of
those functions. It provides services to the next higher layer.

 Layers should be defined so that changes in one layer do not require
changes in other layers

A Model of I/O Organization

open, close, read, write

I/O instructions, channel commands,
buffering techniques

interrupts, scheduling, and
queuing

Protocol layers such as TCP/IP

symbolic file names are
converted to identifiers
add, delete

open, close, read, write

logical reference to files
are converted to physical
addresses (track, sector)

 Source: Pearson

Buffering
 Perform data transfers in advance of requests

 For both inputs and outputs
 Can reduce time waiting for I/O to complete
 Also, avoid I/O interferences with OS swapping decisions

 Block-oriented device
 Stores information in blocks that are usually of fixed size
 Transfers are made one block at a time
 Possible to reference data by its block number
 Disks and USB devices are examples

 Stream-oriented device
 Transfers data as a stream of bytes
 No block structure
 Terminals, printers, keyboards, mouse, communications ports, and most

other devices that are not secondary storage are examples

I/O Buffering Schemes
 No buffering

 Without a buffer, the OS directly accesses
the device when it needs

 Single buffering
 OS assigns a buffer in the system portion

of main memory

 Double buffering
 Use two system buffers
 A process can transfer data to (or from)

one buffer while the operating system
empties (or fills) the other buffer

 Also known as buffer swapping

 Circular buffering
 When more than two buffers are used, the

collection of buffers is a circular buffer
 Each individual buffer is one unit in a

circular buffer

 Source: Pearson

Single Buffering
 For block-oriented devices

 Input transfers are made to the system buffer
 When the transfer is complete, the process moves the block into user

space and immediately requests another block
 Can speed up I/O since data are usually accessed sequentially

 For stream-oriented devices
 Line-at-a-time operation

− Used for dumb terminals or line printers
− User input is one line at a time with a carriage return
− Output to the terminal is similarly one line at a time

 Byte-at-a-time operation
− Used on forms-mode terminals, sensors and controllers
− When each keystroke is significant

Magnetic Disk
 A magnetic disk consists of a collection of platters,

each of which has two recordable surfaces.
 The stack of flatters rotate at 5400 RPM to 15000 RPM
 The diameter of this aluminum platter is from 3 ~ 12 cm

Platter

Track

Platters

Sectors

Tracks

 Read/write heads
 To read or write, the

read/write heads must
be moved so that they
are over the right track

 Disk heads for each
surface are connected
together and move in
conjunction

Magnetic Disk
 Cylinder: a set of tracks at a given radial position

 All the tracks under the heads at a given point on all surfaces
 Track: each surface is divided into concentric circles

 10,000 to 50,000 tracks per surface
 ZBR (Zone Bit Recording)

− The number of sectors per track increases in outer zones
 Sector - track is divided into fixed size sectors (100 ~

500 sectors/track)
 Preamble - allows head to be synchronized before r/w
 Data - 512B - 4KB
 Error correcting code (ECC)

− Hamming code or Reed-Solomon code
 Inter-sector gap
 Formatted capacity does not count preamble/ecc/gap

Magnetic Disk
 Performance

 Seek time
− To move the read/write head to the desired track
− 3 ~ 14ms, consecutive tracks less than 1 ms

 Rotational latency
− To locate the desired sector under the read/write head
− On average, it takes a half of a single rotation time
− 5400 ~ 16200 rpm (90 ~ 270 rotations/s), 2 ~ 6ms avg.

 Transfer time
− Depends on the rotation speed and data density
− 30 ~ 40MB/s, 512B sector takes 12 ~ 16us

 Disk Controller
 Accept commands from CPU

− read, write, format (write preambles), control the arm motion,
detect/correct errors, convert byte to a serial bit pattern, buffering/caching,

Disk Access Time

 Disk access time =
 Seek time + rotational latency + transfer time + controller overhead

 For example,
 HDD with the following characteristics

− 10,000 RPM
− Average seek time 6ms
− Transfer rate 50MB/s
− Controller overhead 0.2ms
− No disk idle time

 Average acceess time for a 512B sector =
− 6ms + 0.5 rotation / 10000RPM + 0.5KB/50MB/s + 0.2ms = 6 + 3 + 0.01 + 0.2 =

9.2ms
− Usually seek time is only 25% ~ 33% of the advertised number due to locality of

disk references
− Most disk controllers have a built-in cache and transfer rates from the cache are

typically much higher and up to 320MB/s

Timing Comparison
 Consider a disk with

 Seek time of 4ms
 Rotation speed of 7500 rpm
 512 byte sectors with 500 sectors per track

 Read a file consisting of 2500 sectors (1.28MB)
 Sequential organization

 The file occupies all the sectors of 5 adjacent tracks.
 Seek time = 4ms
 Rotational latency = 4ms
 Read 500 sectors = 8ms
 Total time = 16 + 4 * 12 = 64ms

 Random access
 Seek time = rotational latency = 4ms
 Read 1 sector = 0.016ms
 Total time = 2500 * 8.016 = 20.04s

 Which sectors are read from the disk has a tremendous impact on
I/O performance!

Disk Scheduling Algorithms

 Source: Pearson

Comparison of Disk Scheduling Algorithms

 Source: Pearson

FIFO
 Processes requests from the queue in sequential order
 Fair to all processes
 Approximate random scheduling in performance if

there are many processes competing for the disk

 Source: Pearson

Priority (PRI)
 The control of the scheduling is outside the control of

disk management software
 Goal is not to optimize disk utilization but to meet

other objectives
 Often short batch jobs and interactive jobs are given

higher priority
 Provides good interactive response time
 Longer jobs may have to wait an excessively long time

Shortest Service Time First (SSTF)
 Select the disk I/O request that requires the least

movement of the disk arm from its current position
 Always choose the minimum seek time

 Does not guarantee that the average seek time to be minimum

 Source: Pearson

SCAN
 Also known as the elevator algorithm
 Arm moves in one direction only

 Satisfies all outstanding requests until it reaches the last track in that direction
then the direction is reversed

 Favors jobs whose requests are for tracks nearest to
both innermost and outermost tracks and favors the
latest arriving jobs

 Source: Pearson

C-SCAN (Circular SCAN)
 Restricts scanning to one direction only
 When the last track has been visited in one direction,

the arm is returned to the opposite end of the disk and
the scan

 Source: Pearson

N-Step-SCAN and FSCAN
 N-Step-Scan

 Segment the disk request queue into subqueues of length N
 Subqueues are processed one at a time, using SCAN
 For a large value of N, the performance of N-Step-Scan approaches

that of SCAN. For a value of N = 1, it is the same as FIFO.

 FSCAN
 Uses two subqueues
 When a scan begins, all of the requests are in one of the queues, with

the other empty
 During scan, all new requests are put into the other queue
 Service of new requests is deferred until all of the old requests have

been processed

RAID
 Motivation

 Disk seek time has continued to improve slowly over time
 970 (50~100ms), 1990 (10ms), 2010 (3ms)

 Ideas
 Performance - parallel processing
 Reliability

 RAID (Redundant Array of Independent Disks)
 Consists of seven levels, zero through six
 These levels denote different design architectures that share 3 characteristics

− RAID is a set of physical disk drives viewed by the operating system as a single
logical drive

− Redundant disk capacity is used to store parity information, which guarantees
data recoverability in case of a disk failure

− Data are distributed across the physical drives of an array in a scheme known as
striping

RAID Level 0
 Stripping - distribute data over multiple disks

 When a transferred block consists of 8 sectors, 2 sectors (strip) are
distributed to different disk drive

 If a block size is bigger than # drives * strip size, multiple requests are
needed

 If a single request consists of multiple logically contiguous strips, then up to n
strips for that request can be handled in parallel

 No redundancy and no error detection/correction but
widely used

 Source: Pearson

RAID Level 1 (Mirroring)
 Redundancy is achieved by duplicating all the data

 Every disk in the array has a mirror disk
− When a drive fails the data may still be accessed from the second drive

 Advantage
 A read request can be served by either of two disks.
 There is no “write penalty”.

− Write can be done in parallel. On a write, RAID levels 2-6 must compute
and update parity bits as well as updating the actual strip.

 Principal disadvantage is the cost

 Source: Pearson

RAID Level 2
 Distribute each byte/word over multiple disks
 Add hamming code

 For example, for 4b nibbles, 3b extra
 Issues

 Require all drives to be rotationally synchronized
 Require a substantial number of drives
 On a write, all data disks and parity disk must be accessed

 Effective choice where many disk errors occur
 Usually RAIS2 is a overkill and is not implemented

 Source: Pearson

RAID Level 3
 Distribute each byte/word over multiple disks
 Add parity bit (bit-interleaved parity)

 Requires only a single redundant disk, no matter how large the disk array
 In case of a disk failure, the parity drive is accessed and data is

reconstructed from the remaining devices.
 Can achieve very high data transfer rates

 Source: Pearson

RAID Level 4
 RAID 4~6 make use of an independent access technique

 Each member disk operates independently. Separate IO requests can be
satisfied in parallel.

 Suitable for applications with high IO request rates but not suitable for
applications with high data transfer rates

 Block-interleaved parity
 A bit-by-bit parity strip is calculated across corresponding strips on each data

disk, and the parity bits are stored in the corresponding strip on the parity disk
 A write to disk X1 requires 2 reads of disk X1 and X4(parity) and 2

writes of disk X1 and X4

 Source: Pearson

RAID 4 Level
 Initially, the following relationship holds for each bit I

 X4(i) = X3(i) ⊕ X2(i) ⊕ X1(i) ⊕ X0(i)

 After the write
 X4’(i) = X3(i) ⊕ X2(i) ⊕ X1’(i) ⊕ X0(i)
 = X3(i) ⊕ X2(i) ⊕ X1’(i) ⊕ X0(i) ⊕ X1(i) ⊕ X1(i)
 = X3(i) ⊕ X2(i) ⊕ X1(i) ⊕ X0(i) ⊕ X1(i) ⊕ X1’(i)
 = X4(i) ⊕ X1(i) ⊕ X1’(i)

 Therefore, to calculate the new parity, it must read the
old user data and the old user parity
 Every write operation must involve the parity disk, which can become a

bottleneck.

RAID Level 5
 Similar to RAID-4 but distributes the parity bits across all disks
 Typical allocation is a round-robin scheme
 Has the characteristic that the loss of any one disk does not result

in data loss
 Widely used

 Source: Pearson

RAID Level 6
 Two different parity calculations are carried out and stored in

separate blocks on different disks
 One may use parity (exclusive-OR) and the other can be an independent

algorithm
 Provides extremely high data availability
 Incurs a substantial write penalty because each write affects two

parity blocks
 Compared to RAID5, RAID6 can suffer more than a 30% drop in write

performance

 Source: Pearson

Disk Cache
 Disk cache is a buffer in main memory for disk sectors

 Contains a copy of some of the sectors on the disk

 When an I/O request is made for a particular sector, a
check is made to determine if the sector is in the disk
cache
 If Yes, the request is satisfied via the cache
 If No, the requested sector is read into the disk cache from the disk

LRU
 The most commonly used algorithm
 The block that has not been referenced for the longest

time is replaced
 A stack of pointers reference the cache

 Most recently referenced block is on the top of the stack
 When a block is referenced or brought into the cache, it is placed on

the top of the stack

LFU (Least Frequently Used)
 The block that has experienced the fewest references

is replaced
 A counter is associated with each block
 Counter is incremented each time block is accessed
 When replacement is required, the block with the

smallest count is selected
 Problematic when

 Certain blocks are referenced relatively infrequently overall, but when
they are referenced, there are short intervals of repeated references
due to locality, building up high reference counts. After such interval is
over, the reference count may be misleading.

Homework 10
 Exercise 11.1
 Exercise 11.4
 Exercise 11.6
 Exercise 11.8

Operating System

Chapter 12. File Management

Lynn Choi
School of Electrical Engineering

Files
 In most applications, files are key elements

 For most systems except some real-time systems, files are used as
inputs and outputs

 Virtually all the operating systems provide file systems

 Desirable properties of files:
 Long-term existence

− Files are stored on disk or other secondary storage
 Sharable between processes

− Files have names and can have associated access permissions that permit
controlled sharing

 Structure
− A file can have an internal structure tailored for a particular application.

Also, files can be organized into hierarchical structure to reflect the
relationships among files

File System
 File system

 Provide a means to store data organized as files and it also provides
a collection of functions that can be performed on files

 Typical operations include
− Create, delete, open, close, read, write

 Maintain a set of attributes associated with the file
− Owner, creation time, time last modified, access privileges, and so on.

 File structure
 Four terms are commonly used

− Field
− Record
− File
− Database

Structure Terms
 Field

 Basic element of data
 Contain a single value, such as name, date
 Fixed or variable length

 Record
 A collection of related fields that can be treated as a unit by an application program
 Example: employee record contains name, social security number, job, date of hire, etc.
 Fixed or variable length

 File
 A collection of similar records
 Treated as a single entity by users and applications
 Maybe referenced by a name
 Access control restrictions usually apply at the file level

 Database
 A collection of related data

− It may contain all the information related to an organization or project
− Consist of one or more files

 Relationships among elements of data are explicit
 Designed for use by a number of different applications

File System Objectives

 File system
 A set of system software that provides service to users and

applications in the use of files
 Typically, the only way that a user or application may access file is

through the file system

 File system objectives
 Meet the data management needs of the user
 Guarantee that the data in the file are valid
 Optimize performance for throughput and response time
 Provide I/O support for various storage device types
 Minimize lost or destroyed data
 Provide a standardized set of I/O interface routines to user processes
 Provide I/O support for multiple users in the case of multiple-user

systems

File System Requirements
 Each user

 Should be able to create, delete, read, write and modify files
 May have controlled access to other users’ files
 May control what type of accesses are allowed to each file
 Should be able to restructure the files in a form appropriate to the

problem
 Should be able to move data between files
 Should be able to back up and recover files in case of damage
 Should be able to access files by name than by numeric identifier

File System Architecture

 Source: Pearson

File System Architecture
 Device drivers

 Lowest level
 Communicates directly with peripheral devices
 Responsible for starting/completion of I/O operations on a device
 Part of OS

 Basic file system
 Also referred to as the physical I/O
 Primary interface with the environment outside the computer system
 Deals with data blocks that are exchanged with disk systems
 Deals with the placement of blocks on the secondary storage device
 Deals with buffering blocks in main memory
 Part of OS

File System Architecture
 Basic I/O supervisor

 Responsible for file I/O initiation and termination
 Maintain control structures that deal with device I/O, scheduling, and file

status
 Deals with disk scheduling to optimize performance
 Assign I/O buffers and allocate secondary memory
 Part of OS

 Logical IO
 While basic file system deals with blocks, the logical I/O deals with file

records
 Provide general-purpose record I/O capability and maintain basic data about

files

 Access method
 Level of the file system closest to the user
 Different access methods reflect different file structures and different ways of

accessing and processing the data
 Provides a standard interface between applications and the file systems and

devices

File System in Different Perspective

locate the file

translate user commands to
file manipulation commands

translate records to blocks

allocate free blocks to files

optimize performance create, delete

Authorized users are allowed
to access particular files in particular ways

 Source: Pearson

File Organization
 File organization is the logical structuring of the records
 In choosing a file organization, several criteria are important

 Short access time
 Ease of update
 Economy of storage
 Simple maintenance
 Reliability

 Priority of criteria depends on the application
 If a file is used only in batch mode, the rapid access of a single record is not

important
 For a file on CD-ROM, the ease of update is not an issue

 Five common file organization types are
 Pile
 Sequential file
 Direct, or hashed file
 Indexed file
 Indexed sequential file

Pile
 The least complicated

form of file organization
 There is no file structure

 Data are collected in the
order in which they arrive

 The purpose is simply to
accumulate the mass of
data and save it

 Records may have
different fields, or similar
fields in different order

 Record access is by
exhaustive search

 Source: Pearson

Sequential File
 The most common form of

file structure
 A fixed format is used for

records
 All records have the same length,

consisting of the same number of
fixed-size fields

 Key field
 Uniquely identifies the record
 Records are stored sequentially

based on the key field

 Good for batch applications
 Bad for interactive apps.

 Random access is slow due to
sequential search

 Addition to a file is also slow

 Source: Pearson

Indexed Sequential File
 Two new features

 Adds an index to the file to
support random access

 Adds an overflow file to speed
up addition

 Greatly reduces the time
required to access a single
record
 A sequential file with 1M records

and1000-entry index requires
− 500 accesses to the index file +

500 accesses to the main file
compared to half million
accesses in a sequential file

 Multiple levels of indexing
can be used to provide
greater efficiency in access

 Source: Pearson

Indexed File
 Problems of indexed sequential file

 Efficient processing is limited to the key field

 Indexed file
 Multiple indexes for each field
 Records are accessed only through their indexes

 Exhaustive index
 Contains one entry for every record in the main

file

 Partial index
 Contains entries to records where the field of

interest exists

 Variable-length records can be employed
 Used mostly in applications where

timeliness of information is critical
 Examples would be airline reservation

systems and inventory control systems

 Source: Pearson

Direct or Hashed File
 Access directly any block of a known address
 Makes use of hashing on the key value
 Often used where

 Very rapid access is required
 Fixed-length records are used
 Records are always accessed one at a time

 Examples are
 Directories
 Pricing tables
 Schedules

File Directories
 File directory

 Contains information about
the files, including attributes,
location, and ownership

 The directory itself is a file
 Directory operations

 Search
− Search the directory to find

an entry for the file
 Create/delete file

− Add/delete an entry to the
directory

 List directory
 Update director

− A change in some file
attribute requires a change in
the directory

 Source: Pearson

Directory Structure

 Two-level scheme
 There is one directory for each user and a master directory
 Master directory

− Has an entry for each user directory
− Provide address and access control information

 User directory
− Each user directory is a simple list of the files of that user
− Names must be unique only within the collection of files of a single user

 File system can easily enforce access restriction on directories

 Tree-structured directory
 Master directory with user directories underneath it
 Each user directory may have subdirectories and files as entries

 Each directory can be organized as
 A sequential file or a hashed file (if the directory contains a very large

number of entries

Tree Structured Directory

 Source: Pearson

Example of Tree-Structured Directory

 Source: Pearson

File Sharing
 Two issues arise

 Access rights and the management of simultaneous access (mutual exclusion/deadlock)

 Access rights
− Constitute a hierarchy with each right implying those preceding it

 None – May not even know the existence of the file. Cannot read the directory
 Knowledge – Know the file exists and who the owner is. Must ask the owner for access
 Execute – Can execute the program but cannot copy it
 Read – Can read the file, including copying and execution
 Append – Can add data to the file but cannot modify or delete
 Update – Can modify, delete, and add to the file’s data
 Change protection – Can change the access rights
 Delete – Can delete the file

 Access can be provided to different class of users
 Owner – The person who initially created the file. Has all the access rights
 Specific user – Individual user designated by user ID
 User groups – A group of users
 All – All users

Record Blocking
 Records are the logical unit of access for a structured file whereas

blocks are the unit of I/O
 Thus, to perform I/O, records must be organized as blocks

 Several issues to consider
 Should blocks be of fixed or variable length?

− In most systems, blocks are of fixed size, which simplify IO
 What should be the relative size of a block compared to an average record

size?
− The larger the block, can speed up IO but may include unnecessary records

 Three blocking methods can be used
 Fixed-Length Blocking – fixed-length records are used, and an integral

number of records are stored in a block
 Variable-Length Spanned Blocking – variable-length records are used and

are packed into blocks with no unused space
− Some records may span two blocks

 Variable-Length Unspanned Blocking – variable-length records are used,
but spanning is not employed

Fixed Blocking

 Source: Pearson

Variable Blocking: Spanned

 Source: Pearson

Variable Blocking: Unspanned

 Source: Pearson

File Allocation
 A file consists of a collection of blocks
 OS (file system) is responsible for the file allocation

 OS allocates free space on secondary storage to files
 OS needs to keep track of free spaces

 File allocation issues
 When a new file is created, should we allocate the maximum space

for the file at once?
 OS assigns a contiguous set of free blocks (called a portion) to a file.

What size should we use for the portion? It can range from a single
block to the entire file.

 What kind of data structure is used to keep track of the portions
assigned to a file?
− Example: FAT (File Allocation Table) on DOS

Preallocation vs. Dynamic Allocation

 Preallocation
 Require the maximum file size to be declared at the file creation time
 For some applications, it is possible to estimate the maximum size

− Program compile, file transfer over the network
 But, for many applications, it is impossible to estimate the max. size

− Users and applications tend to overestimate the size, which results in
storage waste

 Dynamic allocation
 Allocate space as needed

Portion Size
 The portion size ranges from a single block to the entire file
 Need to consider the following:

 Contiguity of space increases the performance
 A large number of small portions increases the size of tables needed to

manage the allocation information
 Fixed size portions simplifies the reallocation of spaces
 Variable size or small fixed-size portions minimizes the storage waste

 Two alternatives
 Variable, large contiguous portions

− (+) Better performance, avoid waste, small tables
− (-) Hard to reuse space

 Blocks
− (+) Greater flexibility, don’t have to be contiguous, blocks are allocated on

demand, easy to reuse space
− (-) Large tables

Contiguous File Allocation
 A single contiguous

set of blocks is
allocated to a file at
the time of file
creation

 Preallocation strategy
using variable-size
portions

 Advantages
 Improve I/O

performance for
sequential processing

 FAT needs a single
entry for each file

 Disadvantages
 External fragmentation

− Compaction required

 Source: Pearson

After Compaction

 Source: Pearson

Chained Allocation
 Allocation is on an

individual block basis
 Each block contains a

pointer to the next block
in the chain

 FAT needs just a single
entry for each file

 No external
fragmentation

 Not good when we need
to bring in multiple
blocks since it requires a
series of accesses to
different parts of disk
storage
 Require periodic consolidation

 Source: Pearson

Chained Allocation After Consolidation

 Source: Pearson

Indexed Allocation with Block Portions
 Address the

problems of
contiguous
and chained
allocation

 FAT entry for
each file
points to an
index block,
which has one
entry for each
portion
allocated to
the file

 Source: Pearson

Indexed Allocation with Variable Length Portions

 Source: Pearson

Free Space Management
 Just as the allocated space must be managed, so the

unallocated space must be managed.
 To perform file allocation, it is necessary to know

which blocks are available
 A disk allocation table is needed in addition to a file

allocation table
 Bit table

 A bit vector containing one bit for each block on the disk
 00110000111110000011111101100
 Each entry of a 0 corresponds to a free block, and each 1 corresponds to a

block in use
 Works well with any file allocation method
 The size of the bit table is relatively small but can be still big!

− 16GB disk with 512B blocks needs 4MB bit table, which requires 8000 disk
blocks!

Chained Free Portions
 Chained free portions

 The free portions may be chained together by using a pointer and length
value in each free portion

 Negligible space overhead because there is no need for a disk allocation
table

 Suited to all file allocation methods
 Disadvantages

− Leads to fragmentation
− Every time you allocate a block you need to read the block first to

recover the pointer to the new first free block before writing data to that
block

 Indexing
 Treats free space as a file and uses an index table as it would for file

allocation
 For efficiency, the index should be on the basis of variable-size portions

rather than blocks
 This approach provides efficient support for all of the file allocation methods

Volumes
 A collection of addressable sectors in secondary

memory that an OS or application can use for data
storage

 The sectors in a volume need not be consecutive on a
physical storage device
 They need only appear that way to the OS or application

 A volume may be the result of assembling and
merging smaller volumes

 Examples
 In the simplest case, a single disk is one volume
 Frequently, a disk is divided into partitions, with each partition functioning as

a separate volume
 Partitions on multiple disks as a single volume

	10_IO_Disk_Scheduling
	Operating System��Chapter 11. I/O Management and � Disk Scheduling
	Categories of I/O Devices
	Data Rates
	Organization of I/O Function
	Techniques for Performing I/O
	Evolution of I/O Function
	DMA Block Diagram
	DMA Alternative Configurations
	Design Objectives
	Hierarchical Design
	A Model of I/O Organization
	Buffering
	I/O Buffering Schemes
	Single Buffering
	Magnetic Disk
	Magnetic Disk
	Magnetic Disk
	Disk Access Time
	Timing Comparison
	Disk Scheduling Algorithms
	Comparison of Disk Scheduling Algorithms
	FIFO
	Priority (PRI)
	Shortest Service Time First (SSTF)
	SCAN
	C-SCAN (Circular SCAN)
	N-Step-SCAN and FSCAN
	RAID
	RAID Level 0
	RAID Level 1 (Mirroring)
	RAID Level 2
	RAID Level 3
	RAID Level 4
	RAID 4 Level
	RAID Level 5
	RAID Level 6
	Disk Cache
	LRU
	LFU (Least Frequently Used)
	Homework 10

	11_File_Management
	Operating System��Chapter 12. File Management
	Files
	File System
	Structure Terms
	File System Objectives
	File System Requirements
	File System Architecture
	File System Architecture
	File System Architecture
	File System in Different Perspective
	File Organization
	Pile
	Sequential File
	Indexed Sequential File
	Indexed File
	Direct or Hashed File
	File Directories
	Directory Structure
	Tree Structured Directory
	Example of Tree-Structured Directory
	File Sharing
	Record Blocking
	Fixed Blocking
	슬라이드 번호 24
	슬라이드 번호 25
	File Allocation
	Preallocation vs. Dynamic Allocation
	Portion Size
	Contiguous File Allocation
	슬라이드 번호 30
	Chained Allocation
	슬라이드 번호 32
	슬라이드 번호 33
	슬라이드 번호 34
	Free Space Management
	Chained Free Portions
	Volumes

