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B Review of probability and random variables (Secs.5.1.1 - 5.1.4)
sample space, events, and probability
conditional probability
random variables

functions of random variable
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Experiment, Outcome, and Sample space

random experiment possible outcomes

*flipping a coin *HorT

edrawing a card from a * one of 52 cards
deck of cards
ethrowing a die ¢ 1,2,3,4,5,6

@ Sample space ()

the set of all possible outcomes
Q={H, T}

0 ={1,2,3,4,5,6)

Denote an outcome as w , then w € {2
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Continuous vs. Discrete Sample Space

@ Continuous sample space
Received signal
Temperature

B Discrete sample space
Flipping a coin

bits generated from the source
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Events

®m Events, b
subsets of the sample space
Example: In the experiment of throwing a die,
+ the event “the outcome is odd” consists of outcomes 1, 3, and 5.
+ the event “the outcome is greater than 3” consists of outcomes 4, 5 and 6.
+ the event “the outcome divides 4” consists of the single outcome 4.
Example: In the experiment of picking a number between 0 and 1,

’ ¢¢

+ we can define an event as “the outcome is less than 0.7”,“the outcome is between

Y ¢¢

0.2 and 0.5”,“the outcome is 0.5".
Events are disjoint if their intersection is empty

+ In throwing a die, the events “the outcome is odd” and “the outcome divides 4” are
disjoint.
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Intuitive Concept of Probability

@  Experiment: Flipping a coin

® Head orTail

@  What is the probability of ‘Head’ or ‘Tail’ to occur in the event of flipping a coin?

Q@  Experiment: Flipping a coin 10 times Did you get 1/2 of

probability for ‘H’ or “T"?

Prof. Young-Chai Ko Communication System lI Korea University

1211 83 299 =




@  Experiment: Flipping a coin 100 times
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@ Experiment: Tossing a die
3

m  Possible outcomes=1,2,3,4,5,6

@ Experiment: Toss a die two times then the total possible outcomes are

UL, 1), (1, 2) (1,3),(1,4), (1,5), (1,6),
1(2,2),(2,3), (2, (2,

4),(2,5),(2,6)
)’ (3’ 5)’ ( ’6)’ > 36 possible outcomes
);(4,5), (4,6),
), (5,5), (5,6),

)

)

3.4
4,4
4

3),
) (
) (
) (

)

) ) )

4)

@ Toss a die two times then the total possible outcomes of the sum are

{2,3,4,5,6,7,8,9,10,11, 12}
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@ In the experiment of tossing a die two times and observing the sum more than 8

1(3,6),(4,5), (4,6),(5,4),(5,5), (5,6), (6,3),(6,4), (6,5), (6,6)}

® |0 outcomes out of 36 possible outcomes

@ Now what do you say about the probability of the event that the sum is more than 8?

10
36

P(event of more than 8) =
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Origin of the Probability Theory: Gambling and Probability

Pierre de Fermat (1601-1665)

DO | —

Gambler, Chevalier de Mere

Mere’s questions:

~  Two gamblers,A and B, are gambling. The game rule is that one who wins the three times wins the game.

~  How do we can distribute the money if the game is sopped and A won 2 times and B won one time!
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Probability

B  We define a probability P as a set of function assigning nonnegative values to all events £ such
that the following conditions are satisfied:

. 0< P(E) <1 forall events
P(Q) =1.

3. For disjoint events E1, Fo, E3,--- (i.e., events for which E;NE; # ¢ for all 7 # 7,
U1 Ei) ZP

® |aw of large number and definition of probability

where ¢ is the empty set), we have P(U

P(A)

lim
n— oo

<number of the occurrence of event A>

number of experiments, n

B We can also define the probability such as

P(A) = length of event

length of sample space
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Example of tossing two dies

(1,3) (1,4)
(2,3) (2.4
(3:2)
(4,3)

(5.3 (5.5) (5.6
(6,5)/@/

A ={sum="7}, B={8 <sum < 11}, and, C = {10 < sum}

m  events 4;; = {sum for outcome (i,j) =1+ j}

P(C) =3 (%) - =
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Example

Resistor ‘ B |n a box there are 80 resistors with the same size
and shape.

|8 are 10 Ohm

|2 are 22 Ohm

33 are 27 Ohm

@ Suppose a 22 Ohm resistor is drawn
from the box and not replaced. A
second resistor is then drawn from

the box.

|7 are 47 Ohm

B Experiment: randomly draw out one resistor from
the box with each one being “equally likely” to be
® |n a box there are 80 resistors drawn.
with the same size and shape,  p(draw 10Q) = 18/80,  P(draw 220) = 12/80

\(/jve h'fwe for the second P(draw 27Q) = 33/80,  P(draw 47Q) = 17/80
rawing

P(draw 1002|22Q0) = 18/79,  P(draw 22€2|22Q)) = 12/79 Comdiior b
P(draw 279(22Q) = 33/79,  P(draw 479229Q) = 17/79 I:: > onditional probability
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Joint Probability

® Joint probability for two events A and B

P(AnB)=P(A)+ P(B)— P(AUB)

® Equivalently

P(AUB) = P(A) + P(B) — P(AU B) < P(A) + P(B)

®m  Mutually exclusive events if AN B = ¢ ,and therefore, P(ANB) = P(¢) =0
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Conditional Probability

m  Given some event B with nonzero probability P(B) > 0 we define the conditional
probability of an event A, given B , by

P(AN B)

P(AIB) = —5

The probability P(A|B) simply reflects the fact that the probability of an event A may
depend on a second event 5.

If Aand B are mutually exclusive, AN B = ¢,and P(A|B) = 0.
Conditional probability is a defined quantity and cannot be proven.

+ However, as a probability it must satisfy the three axioms.

4+  From axiom 2,
B P(Q2N B) B P(B) B
POUB) = =55y = Bp) ~ !
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Total Probability

The probability P(A) of any event A depends on a sample space 2 can be expressed in
terms of conditional probabilities.

Suppose we are given N mutually exclusive events B, n =1,2,..., N ;whose union
equals (2. ANB,
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Bayes’ Theorem

@ Bayes’ theorem

C P(B.NA)  P(A|B,)P(By)
P == = P4

p(aB,) = PANB) _ P(Bal4)P(4)

P(Bn) P(B,)

B We can also rewrite

pp gy — FPANB.)  P(AB,)P(Bn) _ P(A|B,)P(B,)
) P(A) P(A) - P(A|By)P(B1) + -+ P(A|By)P(Bn)
P(A|B,)P(B,)

>, P(A|B;)P(B;)

P(AN B) = P(A|B)P(B) = P(B|A)P(A)
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Example: Binary Symmetric Channel (BSC)

P(A3|B2)

0.9

P(A1|B1)P(B;) + P(A1|B2)P(Bs) = 0.9(0.6) + 0.1(0.4) = 0.58
P(Ay|By)P(B;) + P(A3|Bs)P(B3) = 0.1(0.6) + 0.9(0.4) = 0.42
P(A1|B1)P(By) 0.9(0.6) 0.54
P(Ay) - 0.58  0.58
P(As|By)P(By)  0.9(0.4) 0.36
P(A4s) T 042 042
P(A5|By)P(By) 0.1(0.6) 0.06
P(A)) 042 042
P(A1|B2)P(By)  0.1(0.4)  0.04
P(Ay) - 0.58 058
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~ 0.931

~ (0.857

~ (0.143

~ 0.0069

A
P(Al) and P(AQ) 7

P(Bl‘Al) and P(BQ’AQ) 7
P(Bl‘Az) and P(BQ‘Al) 7
Ay
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Independent Events

B Statistically independent if
P(A|B) = P(A)
We also have for statistically events
P(ANB)= P(AB)P(B)=P(A)P(B)
If A and B are statistically independent,
P(ANB)=P(AB)P(B)=P(A)P(B) #0
Note
+ If Aand B are nonzero probabilities of occurrences and statistically independent,

+ which means AN B # ¢.

In order for two events to be independent they must have an intersection AN B # ¢
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Example
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B Define events as follows:

Event A :select a king

Event B: select a jack or queen

Event C: select a heart

@ Joint probabilities | :> P(ANB) =0, P(ANC) = 5%’ P(BNC) = 5_22

P(ANB)=0 ##

@ Independent?

P(ANCQO)

P(BN(O)
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Multiple Independent Events

® Three independents
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Permutation and Combination

Permutation

ordering of r elements taken from n

(n—1r)!

Combination
binomial coefficient

r elements taken from n = — —
(n—r)lr!

Binomial coefficient

(z+y)" =

Symmetry of binomial coefficient
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The Random Variable (RV)

B A real random variable is defined as

a real function of the elements of a sample space ()

Represent a random variable by a capital letter such as W, X, or Y and any particular value

of the random variable by a lowercase letter such as w, x, or y.

Thus, given an experiment defined by a sample space ) with elements w, we assign to

every w a real number X (w)

according to some rule and call X (w) a random variable.

Prof. Young-Chai Ko Communication System lI Korea University

124 8% 29¢ 2 23



B Example
O =1{(H,1),(H,2),(H,3),(H,4),(H,5),(H,6),(T,1),(T,2),(T,3),(T,4),(T,5),(T,6);

1111111l
12

|
/1/]
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Conditions for a Function to be a Random

®  First condition
The set {X < z} shall be an event for any real number x .

The probability of this event, denoted by P{X < x} is equal to the sum of the
probabilities of all the elementary events corresponding to {X < x}.

®  Probabilities of the events {X = oo} and {X = —o0}

P{X =0} =0and P{X = —oc0o} =0
®  Probabilities of the events {X < oo}

P{X <} =1
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Categorization of Random Variables

B Continuous random variable

B Discrete random variable

B Mixed random variable
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Bernoulli Trials

There exist two outcomes in the experiment.
Example:
+ binary bit | or 0 is generated
+  Head or tail

Denote each of two outcomes as A and A

Repeat experiments N times and A is observed £ times out of the IV trials.
Such repeated experiments are called Bernoulli trials.

Probability

P(A) =p then P(A)=1—-p

k times out of NN trials for the event A

one particular sequence is k times of A and N — k times of A and its probability is

P(A)P(A)---P(A) P( )P(A)P(A) :pk(l—p)N_k

\ J
TV TV

k terms — k terms
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B Probability that A occurs exactly k times

P(A occurs exactly k times) = (
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Distribution Function

®  Cumulative distribution function (CDF)

Fx(zx) = P{X <z}

® Properties of CDF
(1) Fx(~o00) =0
(2) Fx(o0) =1
(3) 0< Fy(z) <1
(4) Fx(z1) < Fx(zs), ifxzy <o
(5) P{z1 < X < o} = Fx(22) — Fx(x1)

(6) Fx(z) = Fx(z)

®m  |f the values of Z;, we may write F'x(z)

Fx(z)= Z P{X = z;}u(zx — z;)
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If the values of i, we may write F'x (x)

Fx(x) = ZP{X = x; ju(x — x;)

1.0

|
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Probability Density Function (PDF)

B PDF is defined as the derivative of CDF,

dFX (ZC)
dx

fx(x) =

® Properties of PDF
(1) 0< fx(z) allx
(2) 7 fx(z)dz=1
(8) Fx(z) = J_ f(¢

(4) P{r;1 < X < x5} = f;f fx(z)dx
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Gaussian Random Variable

® A random variable X is called gaussian if its density function has the form

fx(x) = ! eXp[—(x_m)zl ox >0and —oo < m < o0

V2mo? 202

® Example
m=2ando =5
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CDF

Peo)=pix <a = [ pe©dc= [ e |- ‘m)Q] i
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Some Special Functions

B Q-function

1 v t2
Q(CU) = \/—2_71_/ e 2 dt

B Error function

2 T
erf(r) = ﬁ/o e " dt

Properties of error function
+ symmetry relation: erf(—z) = —erf(x)
+ As x approaches infinity, erf(x) approaches unity; that is,

2 /OO 2
— e dt =1
VT Jo

Complementary error function

2 e
erfc(z) =1 —erf(x) = — eV dt=1
7
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M Relation between Q and erfc functionss

()
2Q(V2x)
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Q-function Plot

semilog plot
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Binomial Distribution and Density

® letg<p<i1,andN=1,2,.. Then,

0.1318 0.1780

0.8306

0.0998 1.0000

0.9954
0.9624

0.5340

T 2% 0.0040 0.0002
3 4 5 6 0
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Uniform Distribution and Density

a<x<b
elsewhere
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Uniform Distribution and Density

a<x<b
elsewhere
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Uniform Random Samples in Matlab

® |n matlab,“rand(N)” generates the N random samples distributed uniformly between zero

and one.

®  For example,

u=rand(100); % generates 10 uniformly distributed random samples

u= 0.8147 0.9058 0.1270 0.9134 0.6324 0.0975 0.2785 0.5469 0.9575 0.9649

B Binary random sample generation with probability of half for zero and one, respectively.
u=rand(1,1);

if (u<0.5)
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Exponential Distribution and Density

® Example for A =5
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Rayleigh Distribution and Density

forx > 0

Example for A =5
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