Quantum Mechanics 1

Assignment 3

Due: April 9 (Tuesday), 2013

1. A particle in a box with sides at $x= \pm a / 2$ is described by the wave function at time $t=0$

$$
\psi(x)= \begin{cases}0, & -\frac{a}{2}<x<0 \tag{1}\\ \sqrt{\frac{2}{a}}, & 0<x<\frac{a}{2}\end{cases}
$$

(a) Find the eigenstates of the ground state and the first excited state for this system.
(b) What is the probability of observing the energy of the ground state, and the energy of the first excited state?
(c) It evolves in time according to the Schrödinger equation. Can it return to the original state at later times?
2. A particle is confined in a box with sides at $x=0$ and $x=a$. Its initial wave function is given by

$$
\begin{equation*}
\psi(x)=A\left(\psi_{1}(x)+\sqrt{2} \psi_{2}(x)\right) \tag{2}
\end{equation*}
$$

where $\psi_{1}(x)$ is the eigenfunction of the ground state, and $\psi_{2}(x)$ is the first excited state.
(a) Compute A.
(b) What are the probabilities of observing E_{1}, and E_{2} ? (E_{1} and E_{2} are the energies of the ground state and the first excited state.)
(c) Compute $\langle x\rangle$ and $\langle p\rangle$.
(d) What is the wave function at time t ?
(e) What is $\langle x\rangle$ at time t ?
3. Consider the ground state of a particle in the box described in Problem 2. The right-hand side of the box is expanded abruptly to $x=b$. $(b>a)$
(a) What is the probability of this particle to be in the new ground state?
(b) What is the probability of being in the first excited state?
4. Consider a particle confined in a box with sides $x=0$ and $x=a$.
(a) As a simple review, compute again the eigenfunctions and the corresponding energy eigenvalues.
Consider another particle confined in a box with sides $x= \pm a$.
(b) Out of the eigenfunctions of this system, which eigenfunctions satisfy the same boundary conditions as those in part (a)?
(c) By considering the relation in (b), and using a symmetry argument, can you relate the eigenfunctions in part (a) with part of the eigenfunctions in part (b)?

