
Operating System

Chapter 11. I/O Management and
 Disk Scheduling

Lynn Choi
School of Electrical Engineering

Categories of I/O Devices

 I/O devices can be grouped into 3 categories
 Human readable devices

− Suitable for communicating with the computer user
− Printers, terminals, video display, keyboard, mouse

 Machine readable devices
− Suitable for communicating with electronic equipment
− Disk drives, USB devices, sensors, controllers

 Communication devices
− Suitable for communicating with remote devices
− Modems, digital line drivers

Data Rates

 Source: Pearson

Organization of I/O Function
 Three techniques for performing I/O are
 Programmed I/O

 The processor issues an I/O command on behalf of a process to an I/O
module; that process then busy waits for the operation to be completed
before proceeding

 Interrupt-driven I/O
 The processor issues an I/O command on behalf of a process

− If non-blocking – processor continues to execute instructions from the process
that issued the I/O command

− If blocking – the next instruction the processor executes is from the OS, which
will put the current process in a blocked state and schedule another process

 Direct Memory Access (DMA)
 The processor sends a request for a block transfer to the DMA module, which

then controls the exchange of data between main memory and an I/O
module. After the transfer, the DMA module interrupts the processor.

Techniques for Performing I/O

 Source: Pearson

Evolution of I/O Function
 Processor directly controls a peripheral device
 Programmed I/O without interrupt

 An I/O controller or I/O module is added

 Programmed I/O with interrupt
 Same configuration as step 2, but now interrupts are employed

 DMA
 The I/O module is given direct control of memory via DMA

 I/O channel
 The I/O module is enhanced to become a separate processor, with a

specialized instruction set tailored for I/O

 I/O processor
 The I/O module has a local memory of its own and is, in fact, a computer in

its own right

DMA Block Diagram
 Processor issues a

command to DMA
module with the following
information
 Read or Write
 The address of IO device
 The starting address of

memory
 The number of words to

transfer

 DMA module transfers
the entire block and after
completion, it interrupts
the processor

 Source: Pearson

DMA Alternative Configurations

 Source: Pearson

Design Objectives

 Efficiency
 Major effort in I/O design
 Important because I/O operations often form a bottleneck
 Most I/O devices are extremely slow compared with main memory

and the processor
 The area that has received the most attention is disk I/O

 Generality
 Desirable to handle all devices in a uniform manner
 The way processes view I/O devices and the way the operating

system manages I/O devices and operations
 Hide the details of device I/O so that user processes and upper levels

of OS see devices in terms of general functions such as read, write,
open, and close

 Diversity of devices makes it difficult to achieve true generality

Hierarchical Design
 Hierarchical nature of modern operating systems

 Operating system functions should be separated according to their
complexity, timescale, and their level of abstraction

 Leads to an OS organization into a series of layers
 Each layer performs a related subset of the functions and relies on the next

lower layer to perform more primitive functions and to conceal the details of
those functions. It provides services to the next higher layer.

 Layers should be defined so that changes in one layer do not require
changes in other layers

A Model of I/O Organization

open, close, read, write

I/O instructions, channel commands,
buffering techniques

interrupts, scheduling, and
queuing

Protocol layers such as TCP/IP

symbolic file names are
converted to identifiers
add, delete

open, close, read, write

logical reference to files
are converted to physical
addresses (track, sector)

 Source: Pearson

Buffering
 Perform data transfers in advance of requests

 For both inputs and outputs
 Can reduce time waiting for I/O to complete
 Also, avoid I/O interferences with OS swapping decisions

 Block-oriented device
 Stores information in blocks that are usually of fixed size
 Transfers are made one block at a time
 Possible to reference data by its block number
 Disks and USB devices are examples

 Stream-oriented device
 Transfers data as a stream of bytes
 No block structure
 Terminals, printers, keyboards, mouse, communications ports, and most

other devices that are not secondary storage are examples

I/O Buffering Schemes
 No buffering

 Without a buffer, the OS directly accesses
the device when it needs

 Single buffering
 OS assigns a buffer in the system portion

of main memory

 Double buffering
 Use two system buffers
 A process can transfer data to (or from)

one buffer while the operating system
empties (or fills) the other buffer

 Also known as buffer swapping

 Circular buffering
 When more than two buffers are used, the

collection of buffers is a circular buffer
 Each individual buffer is one unit in a

circular buffer

 Source: Pearson

Single Buffering
 For block-oriented devices

 Input transfers are made to the system buffer
 When the transfer is complete, the process moves the block into user

space and immediately requests another block
 Can speed up I/O since data are usually accessed sequentially

 For stream-oriented devices
 Line-at-a-time operation

− Used for dumb terminals or line printers
− User input is one line at a time with a carriage return
− Output to the terminal is similarly one line at a time

 Byte-at-a-time operation
− Used on forms-mode terminals, sensors and controllers
− When each keystroke is significant

Magnetic Disk
 A magnetic disk consists of a collection of platters,

each of which has two recordable surfaces.
 The stack of flatters rotate at 5400 RPM to 15000 RPM
 The diameter of this aluminum platter is from 3 ~ 12 cm

Platter

Track

Platters

Sectors

Tracks

 Read/write heads
 To read or write, the

read/write heads must
be moved so that they
are over the right track

 Disk heads for each
surface are connected
together and move in
conjunction

Magnetic Disk
 Cylinder: a set of tracks at a given radial position

 All the tracks under the heads at a given point on all surfaces
 Track: each surface is divided into concentric circles

 10,000 to 50,000 tracks per surface
 ZBR (Zone Bit Recording)

− The number of sectors per track increases in outer zones
 Sector - track is divided into fixed size sectors (100 ~

500 sectors/track)
 Preamble - allows head to be synchronized before r/w
 Data - 512B - 4KB
 Error correcting code (ECC)

− Hamming code or Reed-Solomon code
 Inter-sector gap
 Formatted capacity does not count preamble/ecc/gap

Magnetic Disk
 Performance

 Seek time
− To move the read/write head to the desired track
− 3 ~ 14ms, consecutive tracks less than 1 ms

 Rotational latency
− To locate the desired sector under the read/write head
− On average, it takes a half of a single rotation time
− 5400 ~ 16200 rpm (90 ~ 270 rotations/s), 2 ~ 6ms avg.

 Transfer time
− Depends on the rotation speed and data density
− 30 ~ 40MB/s, 512B sector takes 12 ~ 16us

 Disk Controller
 Accept commands from CPU

− read, write, format (write preambles), control the arm motion,
detect/correct errors, convert byte to a serial bit pattern, buffering/caching,

Disk Access Time

 Disk access time =
 Seek time + rotational latency + transfer time + controller overhead

 For example,
 HDD with the following characteristics

− 10,000 RPM
− Average seek time 6ms
− Transfer rate 50MB/s
− Controller overhead 0.2ms
− No disk idle time

 Average acceess time for a 512B sector =
− 6ms + 0.5 rotation / 10000RPM + 0.5KB/50MB/s + 0.2ms = 6 + 3 + 0.01 + 0.2 =

9.2ms
− Usually seek time is only 25% ~ 33% of the advertised number due to locality of

disk references
− Most disk controllers have a built-in cache and transfer rates from the cache are

typically much higher and up to 320MB/s

Timing Comparison
 Consider a disk with

 Seek time of 4ms
 Rotation speed of 7500 rpm
 512 byte sectors with 500 sectors per track

 Read a file consisting of 2500 sectors (1.28MB)
 Sequential organization

 The file occupies all the sectors of 5 adjacent tracks.
 Seek time = 4ms
 Rotational latency = 4ms
 Read 500 sectors = 8ms
 Total time = 16 + 4 * 12 = 64ms

 Random access
 Seek time = rotational latency = 4ms
 Read 1 sector = 0.016ms
 Total time = 2500 * 8.016 = 20.04s

 Which sectors are read from the disk has a tremendous impact on
I/O performance!

Disk Scheduling Algorithms

 Source: Pearson

Comparison of Disk Scheduling Algorithms

 Source: Pearson

FIFO
 Processes requests from the queue in sequential order
 Fair to all processes
 Approximate random scheduling in performance if

there are many processes competing for the disk

 Source: Pearson

Priority (PRI)
 The control of the scheduling is outside the control of

disk management software
 Goal is not to optimize disk utilization but to meet

other objectives
 Often short batch jobs and interactive jobs are given

higher priority
 Provides good interactive response time
 Longer jobs may have to wait an excessively long time

Shortest Service Time First (SSTF)
 Select the disk I/O request that requires the least

movement of the disk arm from its current position
 Always choose the minimum seek time

 Does not guarantee that the average seek time to be minimum

 Source: Pearson

SCAN
 Also known as the elevator algorithm
 Arm moves in one direction only

 Satisfies all outstanding requests until it reaches the last track in that direction
then the direction is reversed

 Favors jobs whose requests are for tracks nearest to
both innermost and outermost tracks and favors the
latest arriving jobs

 Source: Pearson

C-SCAN (Circular SCAN)
 Restricts scanning to one direction only
 When the last track has been visited in one direction,

the arm is returned to the opposite end of the disk and
the scan

 Source: Pearson

N-Step-SCAN and FSCAN
 N-Step-Scan

 Segment the disk request queue into subqueues of length N
 Subqueues are processed one at a time, using SCAN
 For a large value of N, the performance of N-Step-Scan approaches

that of SCAN. For a value of N = 1, it is the same as FIFO.

 FSCAN
 Uses two subqueues
 When a scan begins, all of the requests are in one of the queues, with

the other empty
 During scan, all new requests are put into the other queue
 Service of new requests is deferred until all of the old requests have

been processed

RAID
 Motivation

 Disk seek time has continued to improve slowly over time
 970 (50~100ms), 1990 (10ms), 2010 (3ms)

 Ideas
 Performance - parallel processing
 Reliability

 RAID (Redundant Array of Independent Disks)
 Consists of seven levels, zero through six
 These levels denote different design architectures that share 3 characteristics

− RAID is a set of physical disk drives viewed by the operating system as a single
logical drive

− Redundant disk capacity is used to store parity information, which guarantees
data recoverability in case of a disk failure

− Data are distributed across the physical drives of an array in a scheme known as
striping

RAID Level 0
 Stripping - distribute data over multiple disks

 When a transferred block consists of 8 sectors, 2 sectors (strip) are
distributed to different disk drive

 If a block size is bigger than # drives * strip size, multiple requests are
needed

 If a single request consists of multiple logically contiguous strips, then up to n
strips for that request can be handled in parallel

 No redundancy and no error detection/correction but
widely used

 Source: Pearson

RAID Level 1 (Mirroring)
 Redundancy is achieved by duplicating all the data

 Every disk in the array has a mirror disk
− When a drive fails the data may still be accessed from the second drive

 Advantage
 A read request can be served by either of two disks.
 There is no “write penalty”.

− Write can be done in parallel. On a write, RAID levels 2-6 must compute
and update parity bits as well as updating the actual strip.

 Principal disadvantage is the cost

 Source: Pearson

RAID Level 2
 Distribute each byte/word over multiple disks
 Add hamming code

 For example, for 4b nibbles, 3b extra
 Issues

 Require all drives to be rotationally synchronized
 Require a substantial number of drives
 On a write, all data disks and parity disk must be accessed

 Effective choice where many disk errors occur
 Usually RAIS2 is a overkill and is not implemented

 Source: Pearson

RAID Level 3
 Distribute each byte/word over multiple disks
 Add parity bit (bit-interleaved parity)

 Requires only a single redundant disk, no matter how large the disk array
 In case of a disk failure, the parity drive is accessed and data is

reconstructed from the remaining devices.
 Can achieve very high data transfer rates

 Source: Pearson

RAID Level 4
 RAID 4~6 make use of an independent access technique

 Each member disk operates independently. Separate IO requests can be
satisfied in parallel.

 Suitable for applications with high IO request rates but not suitable for
applications with high data transfer rates

 Block-interleaved parity
 A bit-by-bit parity strip is calculated across corresponding strips on each data

disk, and the parity bits are stored in the corresponding strip on the parity disk
 A write to disk X1 requires 2 reads of disk X1 and X4(parity) and 2

writes of disk X1 and X4

 Source: Pearson

RAID 4 Level
 Initially, the following relationship holds for each bit I

 X4(i) = X3(i) ⊕ X2(i) ⊕ X1(i) ⊕ X0(i)

 After the write
 X4’(i) = X3(i) ⊕ X2(i) ⊕ X1’(i) ⊕ X0(i)
 = X3(i) ⊕ X2(i) ⊕ X1’(i) ⊕ X0(i) ⊕ X1(i) ⊕ X1(i)
 = X3(i) ⊕ X2(i) ⊕ X1(i) ⊕ X0(i) ⊕ X1(i) ⊕ X1’(i)
 = X4(i) ⊕ X1(i) ⊕ X1’(i)

 Therefore, to calculate the new parity, it must read the
old user data and the old user parity
 Every write operation must involve the parity disk, which can become a

bottleneck.

RAID Level 5
 Similar to RAID-4 but distributes the parity bits across all disks
 Typical allocation is a round-robin scheme
 Has the characteristic that the loss of any one disk does not result

in data loss
 Widely used

 Source: Pearson

RAID Level 6
 Two different parity calculations are carried out and stored in

separate blocks on different disks
 One may use parity (exclusive-OR) and the other can be an independent

algorithm
 Provides extremely high data availability
 Incurs a substantial write penalty because each write affects two

parity blocks
 Compared to RAID5, RAID6 can suffer more than a 30% drop in write

performance

 Source: Pearson

Disk Cache
 Disk cache is a buffer in main memory for disk sectors

 Contains a copy of some of the sectors on the disk

 When an I/O request is made for a particular sector, a
check is made to determine if the sector is in the disk
cache
 If Yes, the request is satisfied via the cache
 If No, the requested sector is read into the disk cache from the disk

LRU
 The most commonly used algorithm
 The block that has not been referenced for the longest

time is replaced
 A stack of pointers reference the cache

 Most recently referenced block is on the top of the stack
 When a block is referenced or brought into the cache, it is placed on

the top of the stack

LFU (Least Frequently Used)
 The block that has experienced the fewest references

is replaced
 A counter is associated with each block
 Counter is incremented each time block is accessed
 When replacement is required, the block with the

smallest count is selected
 Problematic when

 Certain blocks are referenced relatively infrequently overall, but when
they are referenced, there are short intervals of repeated references
due to locality, building up high reference counts. After such interval is
over, the reference count may be misleading.

Homework 10
 Exercise 11.1
 Exercise 11.4
 Exercise 11.6
 Exercise 11.8

Operating System

Chapter 12. File Management

Lynn Choi
School of Electrical Engineering

Files
 In most applications, files are key elements

 For most systems except some real-time systems, files are used as
inputs and outputs

 Virtually all the operating systems provide file systems

 Desirable properties of files:
 Long-term existence

− Files are stored on disk or other secondary storage
 Sharable between processes

− Files have names and can have associated access permissions that permit
controlled sharing

 Structure
− A file can have an internal structure tailored for a particular application.

Also, files can be organized into hierarchical structure to reflect the
relationships among files

File System
 File system

 Provide a means to store data organized as files and it also provides
a collection of functions that can be performed on files

 Typical operations include
− Create, delete, open, close, read, write

 Maintain a set of attributes associated with the file
− Owner, creation time, time last modified, access privileges, and so on.

 File structure
 Four terms are commonly used

− Field
− Record
− File
− Database

Structure Terms
 Field

 Basic element of data
 Contain a single value, such as name, date
 Fixed or variable length

 Record
 A collection of related fields that can be treated as a unit by an application program
 Example: employee record contains name, social security number, job, date of hire, etc.
 Fixed or variable length

 File
 A collection of similar records
 Treated as a single entity by users and applications
 Maybe referenced by a name
 Access control restrictions usually apply at the file level

 Database
 A collection of related data

− It may contain all the information related to an organization or project
− Consist of one or more files

 Relationships among elements of data are explicit
 Designed for use by a number of different applications

File System Objectives

 File system
 A set of system software that provides service to users and

applications in the use of files
 Typically, the only way that a user or application may access file is

through the file system

 File system objectives
 Meet the data management needs of the user
 Guarantee that the data in the file are valid
 Optimize performance for throughput and response time
 Provide I/O support for various storage device types
 Minimize lost or destroyed data
 Provide a standardized set of I/O interface routines to user processes
 Provide I/O support for multiple users in the case of multiple-user

systems

File System Requirements
 Each user

 Should be able to create, delete, read, write and modify files
 May have controlled access to other users’ files
 May control what type of accesses are allowed to each file
 Should be able to restructure the files in a form appropriate to the

problem
 Should be able to move data between files
 Should be able to back up and recover files in case of damage
 Should be able to access files by name than by numeric identifier

File System Architecture

 Source: Pearson

File System Architecture
 Device drivers

 Lowest level
 Communicates directly with peripheral devices
 Responsible for starting/completion of I/O operations on a device
 Part of OS

 Basic file system
 Also referred to as the physical I/O
 Primary interface with the environment outside the computer system
 Deals with data blocks that are exchanged with disk systems
 Deals with the placement of blocks on the secondary storage device
 Deals with buffering blocks in main memory
 Part of OS

File System Architecture
 Basic I/O supervisor

 Responsible for file I/O initiation and termination
 Maintain control structures that deal with device I/O, scheduling, and file

status
 Deals with disk scheduling to optimize performance
 Assign I/O buffers and allocate secondary memory
 Part of OS

 Logical IO
 While basic file system deals with blocks, the logical I/O deals with file

records
 Provide general-purpose record I/O capability and maintain basic data about

files

 Access method
 Level of the file system closest to the user
 Different access methods reflect different file structures and different ways of

accessing and processing the data
 Provides a standard interface between applications and the file systems and

devices

File System in Different Perspective

locate the file

translate user commands to
file manipulation commands

translate records to blocks

allocate free blocks to files

optimize performance create, delete

Authorized users are allowed
to access particular files in particular ways

 Source: Pearson

File Organization
 File organization is the logical structuring of the records
 In choosing a file organization, several criteria are important

 Short access time
 Ease of update
 Economy of storage
 Simple maintenance
 Reliability

 Priority of criteria depends on the application
 If a file is used only in batch mode, the rapid access of a single record is not

important
 For a file on CD-ROM, the ease of update is not an issue

 Five common file organization types are
 Pile
 Sequential file
 Direct, or hashed file
 Indexed file
 Indexed sequential file

Pile
 The least complicated

form of file organization
 There is no file structure

 Data are collected in the
order in which they arrive

 The purpose is simply to
accumulate the mass of
data and save it

 Records may have
different fields, or similar
fields in different order

 Record access is by
exhaustive search

 Source: Pearson

Sequential File
 The most common form of

file structure
 A fixed format is used for

records
 All records have the same length,

consisting of the same number of
fixed-size fields

 Key field
 Uniquely identifies the record
 Records are stored sequentially

based on the key field

 Good for batch applications
 Bad for interactive apps.

 Random access is slow due to
sequential search

 Addition to a file is also slow

 Source: Pearson

Indexed Sequential File
 Two new features

 Adds an index to the file to
support random access

 Adds an overflow file to speed
up addition

 Greatly reduces the time
required to access a single
record
 A sequential file with 1M records

and1000-entry index requires
− 500 accesses to the index file +

500 accesses to the main file
compared to half million
accesses in a sequential file

 Multiple levels of indexing
can be used to provide
greater efficiency in access

 Source: Pearson

Indexed File
 Problems of indexed sequential file

 Efficient processing is limited to the key field

 Indexed file
 Multiple indexes for each field
 Records are accessed only through their indexes

 Exhaustive index
 Contains one entry for every record in the main

file

 Partial index
 Contains entries to records where the field of

interest exists

 Variable-length records can be employed
 Used mostly in applications where

timeliness of information is critical
 Examples would be airline reservation

systems and inventory control systems

 Source: Pearson

Direct or Hashed File
 Access directly any block of a known address
 Makes use of hashing on the key value
 Often used where

 Very rapid access is required
 Fixed-length records are used
 Records are always accessed one at a time

 Examples are
 Directories
 Pricing tables
 Schedules

File Directories
 File directory

 Contains information about
the files, including attributes,
location, and ownership

 The directory itself is a file
 Directory operations

 Search
− Search the directory to find

an entry for the file
 Create/delete file

− Add/delete an entry to the
directory

 List directory
 Update director

− A change in some file
attribute requires a change in
the directory

 Source: Pearson

Directory Structure

 Two-level scheme
 There is one directory for each user and a master directory
 Master directory

− Has an entry for each user directory
− Provide address and access control information

 User directory
− Each user directory is a simple list of the files of that user
− Names must be unique only within the collection of files of a single user

 File system can easily enforce access restriction on directories

 Tree-structured directory
 Master directory with user directories underneath it
 Each user directory may have subdirectories and files as entries

 Each directory can be organized as
 A sequential file or a hashed file (if the directory contains a very large

number of entries

Tree Structured Directory

 Source: Pearson

Example of Tree-Structured Directory

 Source: Pearson

File Sharing
 Two issues arise

 Access rights and the management of simultaneous access (mutual exclusion/deadlock)

 Access rights
− Constitute a hierarchy with each right implying those preceding it

 None – May not even know the existence of the file. Cannot read the directory
 Knowledge – Know the file exists and who the owner is. Must ask the owner for access
 Execute – Can execute the program but cannot copy it
 Read – Can read the file, including copying and execution
 Append – Can add data to the file but cannot modify or delete
 Update – Can modify, delete, and add to the file’s data
 Change protection – Can change the access rights
 Delete – Can delete the file

 Access can be provided to different class of users
 Owner – The person who initially created the file. Has all the access rights
 Specific user – Individual user designated by user ID
 User groups – A group of users
 All – All users

Record Blocking
 Records are the logical unit of access for a structured file whereas

blocks are the unit of I/O
 Thus, to perform I/O, records must be organized as blocks

 Several issues to consider
 Should blocks be of fixed or variable length?

− In most systems, blocks are of fixed size, which simplify IO
 What should be the relative size of a block compared to an average record

size?
− The larger the block, can speed up IO but may include unnecessary records

 Three blocking methods can be used
 Fixed-Length Blocking – fixed-length records are used, and an integral

number of records are stored in a block
 Variable-Length Spanned Blocking – variable-length records are used and

are packed into blocks with no unused space
− Some records may span two blocks

 Variable-Length Unspanned Blocking – variable-length records are used,
but spanning is not employed

Fixed Blocking

 Source: Pearson

Variable Blocking: Spanned

 Source: Pearson

Variable Blocking: Unspanned

 Source: Pearson

File Allocation
 A file consists of a collection of blocks
 OS (file system) is responsible for the file allocation

 OS allocates free space on secondary storage to files
 OS needs to keep track of free spaces

 File allocation issues
 When a new file is created, should we allocate the maximum space

for the file at once?
 OS assigns a contiguous set of free blocks (called a portion) to a file.

What size should we use for the portion? It can range from a single
block to the entire file.

 What kind of data structure is used to keep track of the portions
assigned to a file?
− Example: FAT (File Allocation Table) on DOS

Preallocation vs. Dynamic Allocation

 Preallocation
 Require the maximum file size to be declared at the file creation time
 For some applications, it is possible to estimate the maximum size

− Program compile, file transfer over the network
 But, for many applications, it is impossible to estimate the max. size

− Users and applications tend to overestimate the size, which results in
storage waste

 Dynamic allocation
 Allocate space as needed

Portion Size
 The portion size ranges from a single block to the entire file
 Need to consider the following:

 Contiguity of space increases the performance
 A large number of small portions increases the size of tables needed to

manage the allocation information
 Fixed size portions simplifies the reallocation of spaces
 Variable size or small fixed-size portions minimizes the storage waste

 Two alternatives
 Variable, large contiguous portions

− (+) Better performance, avoid waste, small tables
− (-) Hard to reuse space

 Blocks
− (+) Greater flexibility, don’t have to be contiguous, blocks are allocated on

demand, easy to reuse space
− (-) Large tables

Contiguous File Allocation
 A single contiguous

set of blocks is
allocated to a file at
the time of file
creation

 Preallocation strategy
using variable-size
portions

 Advantages
 Improve I/O

performance for
sequential processing

 FAT needs a single
entry for each file

 Disadvantages
 External fragmentation

− Compaction required

 Source: Pearson

After Compaction

 Source: Pearson

Chained Allocation
 Allocation is on an

individual block basis
 Each block contains a

pointer to the next block
in the chain

 FAT needs just a single
entry for each file

 No external
fragmentation

 Not good when we need
to bring in multiple
blocks since it requires a
series of accesses to
different parts of disk
storage
 Require periodic consolidation

 Source: Pearson

Chained Allocation After Consolidation

 Source: Pearson

Indexed Allocation with Block Portions
 Address the

problems of
contiguous
and chained
allocation

 FAT entry for
each file
points to an
index block,
which has one
entry for each
portion
allocated to
the file

 Source: Pearson

Indexed Allocation with Variable Length Portions

 Source: Pearson

Free Space Management
 Just as the allocated space must be managed, so the

unallocated space must be managed.
 To perform file allocation, it is necessary to know

which blocks are available
 A disk allocation table is needed in addition to a file

allocation table
 Bit table

 A bit vector containing one bit for each block on the disk
 00110000111110000011111101100
 Each entry of a 0 corresponds to a free block, and each 1 corresponds to a

block in use
 Works well with any file allocation method
 The size of the bit table is relatively small but can be still big!

− 16GB disk with 512B blocks needs 4MB bit table, which requires 8000 disk
blocks!

Chained Free Portions
 Chained free portions

 The free portions may be chained together by using a pointer and length
value in each free portion

 Negligible space overhead because there is no need for a disk allocation
table

 Suited to all file allocation methods
 Disadvantages

− Leads to fragmentation
− Every time you allocate a block you need to read the block first to

recover the pointer to the new first free block before writing data to that
block

 Indexing
 Treats free space as a file and uses an index table as it would for file

allocation
 For efficiency, the index should be on the basis of variable-size portions

rather than blocks
 This approach provides efficient support for all of the file allocation methods

Volumes
 A collection of addressable sectors in secondary

memory that an OS or application can use for data
storage

 The sectors in a volume need not be consecutive on a
physical storage device
 They need only appear that way to the OS or application

 A volume may be the result of assembling and
merging smaller volumes

 Examples
 In the simplest case, a single disk is one volume
 Frequently, a disk is divided into partitions, with each partition functioning as

a separate volume
 Partitions on multiple disks as a single volume

	10_IO_Disk_Scheduling
	Operating System��Chapter 11. I/O Management and � Disk Scheduling
	Categories of I/O Devices
	Data Rates
	Organization of I/O Function
	Techniques for Performing I/O
	Evolution of I/O Function
	DMA Block Diagram
	DMA Alternative Configurations
	Design Objectives
	Hierarchical Design
	A Model of I/O Organization
	Buffering
	I/O Buffering Schemes
	Single Buffering
	Magnetic Disk
	Magnetic Disk
	Magnetic Disk
	Disk Access Time
	Timing Comparison
	Disk Scheduling Algorithms
	Comparison of Disk Scheduling Algorithms
	FIFO
	Priority (PRI)
	Shortest Service Time First (SSTF)
	SCAN
	C-SCAN (Circular SCAN)
	N-Step-SCAN and FSCAN
	RAID
	RAID Level 0
	RAID Level 1 (Mirroring)
	RAID Level 2
	RAID Level 3
	RAID Level 4
	RAID 4 Level
	RAID Level 5
	RAID Level 6
	Disk Cache
	LRU
	LFU (Least Frequently Used)
	Homework 10

	11_File_Management
	Operating System��Chapter 12. File Management
	Files
	File System
	Structure Terms
	File System Objectives
	File System Requirements
	File System Architecture
	File System Architecture
	File System Architecture
	File System in Different Perspective
	File Organization
	Pile
	Sequential File
	Indexed Sequential File
	Indexed File
	Direct or Hashed File
	File Directories
	Directory Structure
	Tree Structured Directory
	Example of Tree-Structured Directory
	File Sharing
	Record Blocking
	Fixed Blocking
	슬라이드 번호 24
	슬라이드 번호 25
	File Allocation
	Preallocation vs. Dynamic Allocation
	Portion Size
	Contiguous File Allocation
	슬라이드 번호 30
	Chained Allocation
	슬라이드 번호 32
	슬라이드 번호 33
	슬라이드 번호 34
	Free Space Management
	Chained Free Portions
	Volumes

