Mobile Communications (KECE425)

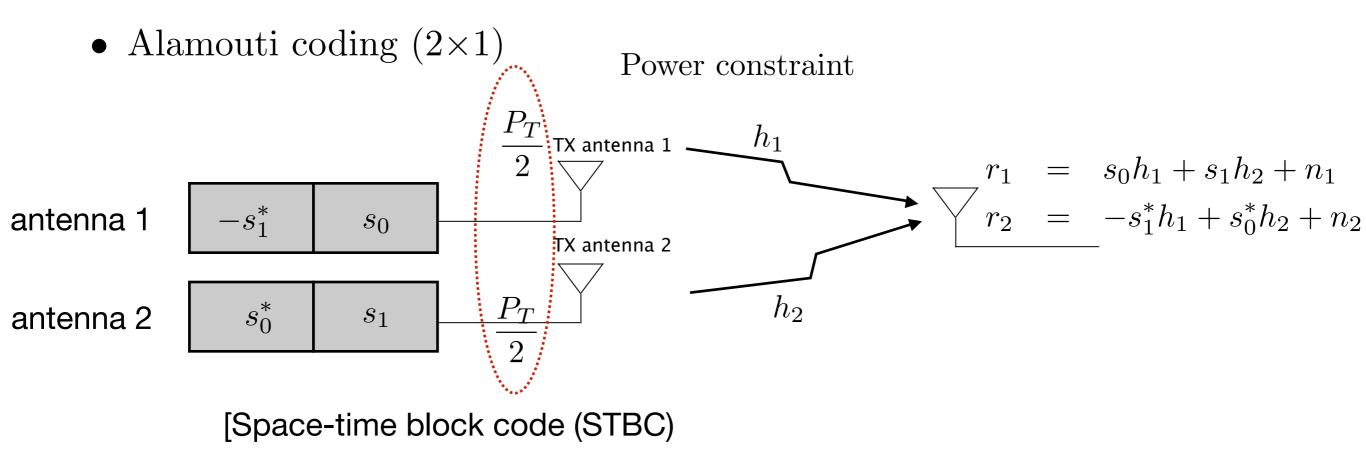
Lecture Note 21 5-21-2014 Prof. Young-Chai Ko

Summary

- Complexity issues of diversity systems
 - ADC and Nyquist sampling theorem
 - Transmit diversity
 - Channel is known at the transmitter (Closed-loop transmit diversity: CLTD)
 - Channel is unknown at the transmitter (Space-time block coding: STBC)
- Transmit-Receive diversity (Maximal ratio transmission)
- Multi-user opportunistic diversity

Open-Loop Transmit Diversity

- There are many open loop transmit diversity schemes.
- Out of them, we only study the space-time block coding (STBC) with dual transmit antennas.
- Alamouti devised the STBC with two antennas in 1998 and it is often called as Alamouti coding.



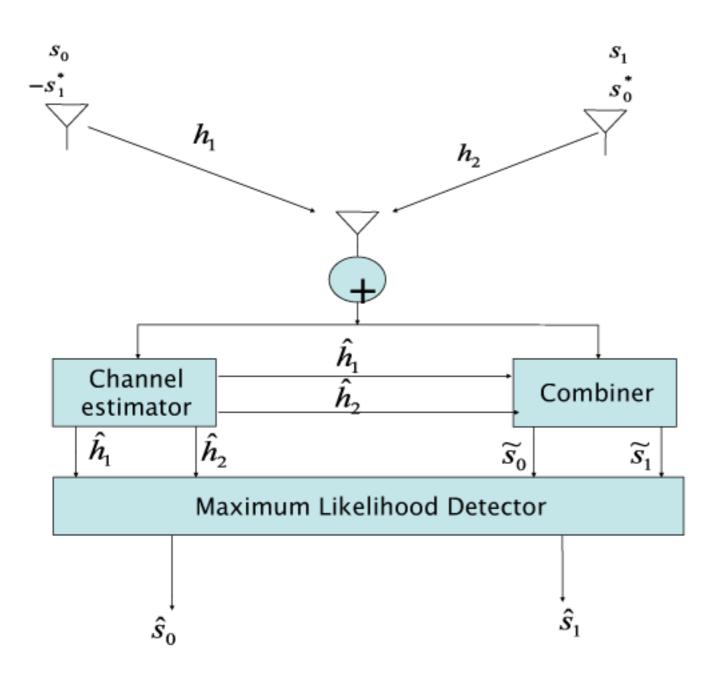
	antenna1	antenna2	
time t	s_0	s_1	
time t+T	$-s_{1}^{*}$	s_0^*	

• QPSK example

$00 \rightarrow s^1$		$1 \perp i$	[Space-time block code (STBC)		
$00 \rightarrow s$ $01 \rightarrow s^2$		v		antenna1	antenna2
$01 \rightarrow s$ $11 \rightarrow s^3$		v	time t	s_0	s_1
$11 \rightarrow s$ $10 \rightarrow s^4$		U	time t+T	$-s_{1}^{*}$	s_0^*
$10 \rightarrow s$	—	-1 - j			1

data: $01001011\cdots \implies s_0s_1s_2s_4\cdots = s^2s^1s^4s^3\cdots$

• Detection of space-time block coding signal



$$r_{1} = s_{0}h_{1} + s_{1}h_{2} + n_{1}$$

$$r_{2} = -s_{1}^{*}h_{1} + s_{0}^{*}h_{2} + n_{2}$$

$$\bigvee$$

$$v_{1} = h_{1}^{*}r_{1} + h_{2}r_{2}^{*}$$

$$v_{2} = h_{2}^{*}r_{1} - h_{1}r_{2}^{*}$$

$$\bigvee$$

 $v_1 = (|h_1|^2 + |h_2|^2)s_0 + h_1^*n_1 + h_2n_2^*$ $v_2 = (|h_1|^2 + |h_2|^2)s_1 + h_2^*n_1 - h_2n_2^*$

- Received signal vector
 - At odd time

$$v_{2k-1} = \left(|h_1|^2 + |h_2|^2 \right) s_0 + h_1^* n_1 + h_2 n_2^*$$

* SNR

$$\gamma_t = \frac{\left(|h_1|^2 + |h_2|^2\right)^2 E_s/2}{N_0 \left(|h_1|^2 + |h_2|^2\right)} = \frac{\left(|h_1|^2 + |h_2|^2\right) E_s/2}{N_0} = \frac{\gamma_1 + \gamma_2}{2}$$

- At even time

$$v_{2k} = \left(|h_1|^2 + |h_2|^2\right)s_1 + h_2^*n_1 - h_2n_2^*$$

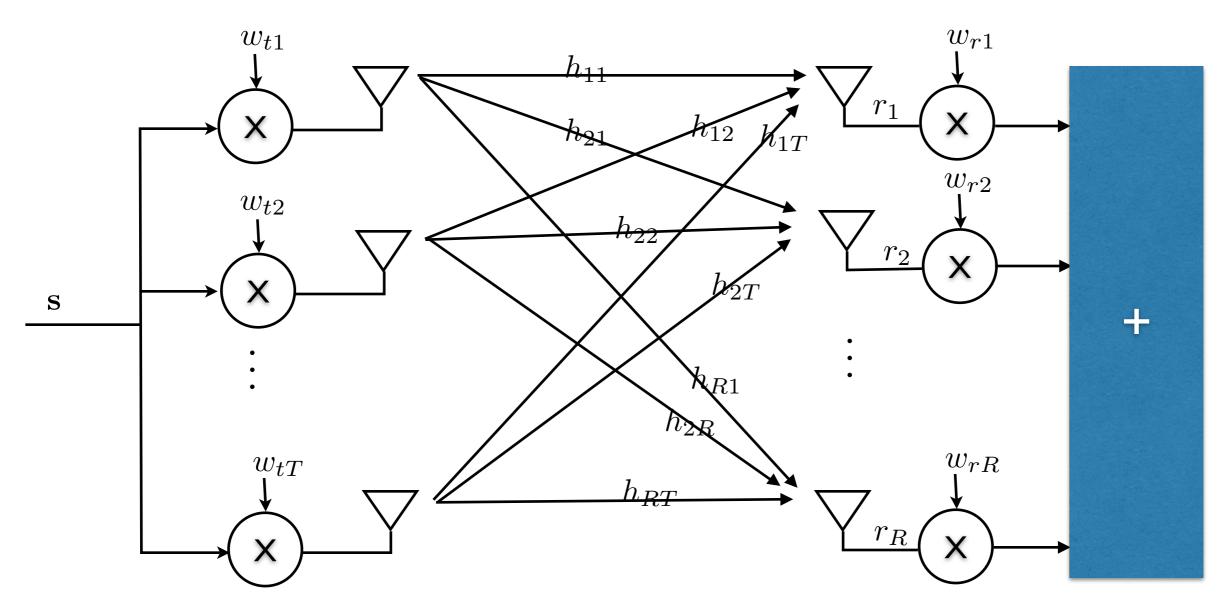
* SNR

$$\gamma_t = \frac{\gamma_1 + \gamma_2}{2}$$

- Performance of STBC scheme
 - It gives the same performance as CLTD with two antennas only when each of diversity branch has the same average SNR, $\bar{\gamma}_l = \bar{\gamma}$ for all l (that is, i.i.d.).

Maximal Ratio Transmission (MRT)

• MRT is also called multiple input multiple output (MIMO)-MRC.



• MIMO channel can be represented in matrix form:

$$\mathbf{H} = \begin{bmatrix} h_{11} & h_{12} & \cdots & h_{1T} \\ h_{21} & h_{22} & \cdots & h_{2T} \\ \vdots & \vdots & \vdots & \vdots \\ h_{R1} & h_{R2} & \cdots & h_{RT} \end{bmatrix}$$

• Vector representation

$$\mathbf{w}_t = [w_{t1} \ w_{t2} \ \cdots \ w_{tT}]^T$$
$$\mathbf{w}_r = [w_{r1} \ w_{r2} \ \cdots \ w_{rR}]^T$$
$$\mathbf{n} = [n_1 \ n2 \ \cdots \ n_R]^T$$

• Received signal:

$$r_{1} = (w_{t,1}h_{11} + w_{t,2}h_{12} + \dots + w_{t,T}h_{1T})s + n_{1}$$

$$r_{2} = (w_{t,1}h_{21} + w_{t,2}h_{22} + \dots + w_{t,T}h_{2T})s + n_{2}$$

$$\vdots$$

$$r_{R} = (w_{t,1}h_{R1} + w_{t,2}h_{R2} + \dots + w_{t,T}h_{RT})s + n_{R}$$

- Received signal in vector form:

$$\mathbf{r} = \mathbf{H}\mathbf{w}_t s + \mathbf{n}$$

• Combined signal:

 $r_t = \mathbf{w}_r \mathbf{r}$

• Optimal receive weight vector \mathbf{w}_r can be easily shown to be given as

$$\mathbf{w}_r = c \left(\mathbf{H} \mathbf{w}_t \right)^H = c \mathbf{w}_t^H \mathbf{H}^H$$

where $(\cdot)^H$ denote the Hermitian operation.

- In this case, the received signal can be written as

$$r_t = \mathbf{w}_r \mathbf{r}$$

= $\mathbf{w}_r (\mathbf{H} \mathbf{w}_t s + \mathbf{n})$
= $c \mathbf{w}_t^H \mathbf{H}^H \mathbf{H} \mathbf{w}_t s + c \mathbf{w}_t^H \mathbf{H}^H \mathbf{n}$

- SNR of the received signal
 - Received signal can be written as

$$r_t = c \mathbf{w}_t^H \mathbf{H}^H \mathbf{H} \mathbf{w}_t s + c \mathbf{w}_t^H \mathbf{H}^H \mathbf{n}$$

- SNR of
$$r_t$$

$$\gamma_t = \frac{1}{\sigma_n^2} \mathbf{w}_t^H \mathbf{H}^H \mathbf{H} \mathbf{w}_t$$

• Optimal transmit weight vector, $\mathbf{w}_t^{\text{opt}}$

$$\mathbf{w}_{t}^{\text{opt}} = \max_{\mathbf{w}_{t}} \gamma_{t}$$

$$= \max_{\mathbf{w}_{t}} \frac{1}{\sigma_{n}^{2}} \mathbf{w}_{t}^{H} \mathbf{H}^{H} \mathbf{H} \mathbf{w}_{t}$$

$$= \max_{\mathbf{w}_{t}} \mathbf{w}_{t}^{H} \mathbf{H}^{H} \mathbf{H} \mathbf{w}_{t}$$

• Find the optimal weight vector \mathbf{w}_t to maximize the SNR γ_t .

$$\mathbf{w}_t^{\text{opt}} = \max_{\mathbf{w}_t} \mathbf{w}_t^H \mathbf{H}^H \mathbf{H} \mathbf{w}_t$$

- We can solve this problem by making use of Rayleigh-Ritz theorem.

• Rayleigh-Ritz theorem

$$\mathbf{x}^{H}\mathbf{A}\mathbf{x} \leq ||\mathbf{x}||\lambda_{\max}|$$

where A is the Hermitian matrix, x is an y non-zero complex vector and λ_{\max} is the largest eigenvalue of A.

- Equality holds if and only if \mathbf{x} is the eigenvector corresponding to λ_{\max} .
- Based on Rayleigh-Ritz theorem, we can find the optimal weight vector $\mathbf{w}_t^{\text{opt}}$, we can find the optimal weight vector as

$$\mathbf{w}_t^{\mathrm{opt}} = \sqrt{\Omega} \mathbf{U}_{\mathrm{max}}$$

where \mathbf{U}_{\max} is the eigenvector corresponding to the largest eigenvalue of the quadratic form $\mathbf{F} = \mathbf{H}^H \mathbf{H}$ and $\mathbf{U}_{\max}^H \mathbf{U}_{\max} = \mathbf{I}$

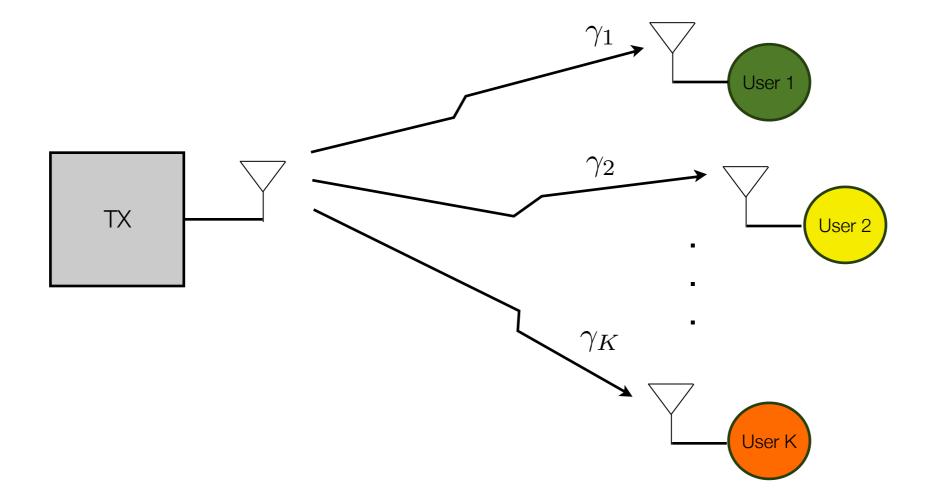
• Combined SNR with the optimum weight vector

$$\gamma_t = \frac{\Omega \lambda_{\max}}{\sigma_n^2}$$

Multi-User Opportunistic Diversity

- We often need to select users if there are more than users to support the service, for a certain limited frequency (or/and time) resource.
- Example:
 - There are 50 MHz bandwidth for the service and each user takes 5 MHz bandwidth. In this case, we can support 10 users for a given time.
 - However, more than 50 users, saying 100 users, are willing to communicate at the same time, what is the best way to select users among 100 users?
- Multi-user opportunistic diversity scheme is simply to select the users with the strongest SNRs.

• Schematic concept of multi-user diversity (MUD).



- Choose the user which has the largest SNR among K users.

• If one user is selected out of K users at every selection period, the selected user k^* can be written as

$$k^* = \max_k(\gamma_1, \gamma_2, \cdots, \gamma_K)$$

• By doing this, we can improve the channel capacity such as

$$C = E \left[\log_2(1+\gamma_k^*) \right]$$
$$= \int_0^\infty \log_2\left(1+\gamma_k^*\right) p_{\gamma_k^*}(\gamma_{k^*}) \, d\gamma_{k^*}$$

• Multi-user diversity gain

